Effective methods in algebraic and analytic geometry IV

 September 6, 2006"Reduction method" in multivariate
polynomial interpolation

Marcin Dumnicki

Harbourne-Hirschowitz Conjecture

Definition. Let $p_{1}, \ldots, p_{r} \in \mathbb{P}^{2}$ be points in general position, let $d, m_{1}, \ldots, m_{r} \in \mathbb{N}$. Define the linear system of curves of degree d with multiplicities m_{1}, \ldots, m_{r} in general position

$$
\mathcal{L}_{d}\left(m_{1}, \ldots, m_{r}\right)=|d H|\left(-\sum_{i=1}^{r} m_{i} p_{i}\right)
$$

where H denotes a general line in \mathbb{P}^{2}.
Question. $\operatorname{dim} \mathcal{L}_{d}\left(m_{1}, \ldots, m_{r}\right)=$?

We can guess that
$\operatorname{dim} \mathcal{L}_{d}\left(m_{1}, \ldots, m_{r}\right)=\operatorname{edim} \mathcal{L}_{d}\left(m_{1}, \ldots, m_{r}\right)$, where

$$
\operatorname{edim} \mathcal{L}_{d}\left(m_{1}, \ldots, m_{r}\right)=
$$

$$
\max \left\{\binom{d+2}{2}-\sum_{i=1}^{r}\binom{m_{i}+1}{2}-1,-1\right\} .
$$

Example. Consider $L=\mathcal{L}_{2}(2,2)$. Then $\operatorname{edim} L=-1$. Let p_{1}, p_{2} be points in general position, let H be the line passing through p_{1} and p_{2}. Then $2 H$ (or, looking at the equation, H^{2}) belongs to L.

Conjecture (Harbourne-Hirschowitz). Let $\Pi: \widetilde{\mathbb{P}^{2}} \rightarrow \mathbb{P}^{2}$ be a blow-up of \mathbb{P}^{2} in r points in general position with exceptional divisors E_{1}, \ldots, E_{r}. Let $L=\mathcal{L}_{d}\left(m_{1}, \ldots, m_{r}\right)$. Then $\operatorname{dim} L>\operatorname{edim} L$ (such system will be called special) if and only if there exists an irreducible curve $C \subset \mathbb{P}^{2}$ such that its proper transform \widetilde{C} by Π satisfies
(1) $\widetilde{C}^{2}=-1$,
(2) $\widetilde{L} \cdot \widetilde{C}<-1$, where $\widetilde{L}=\left|d \Pi^{*}(H)-\sum_{i=1}^{r} m_{i} E_{i}\right|$.

Conjecture (Nagata). Let $C \in \mathbb{P}^{2}$ be a curve, let $m_{1}, \ldots, m_{r} \in \mathbb{N}, r \geq 9$, let $p_{1}, \ldots, p_{r} \in \mathbb{P}^{2}$ be points in general position. If $\operatorname{mult}_{p_{i}} C \geq m_{i}$ for $i=1, \ldots, r$, then

$$
\operatorname{deg} C \geq \sqrt{\frac{1}{r}} \sum_{i=1}^{r} m_{i} .
$$

Methods

- many "ad hoc" methods, both computer algebra and algebraic geometry (vanishing theorems) can be applied;
- blowing-up of the plane along a line (C. Ciliberto and R. Miranda);
- "reduction method" (M.D.).

Results

- a lot of partial results;
- multiplicities bounded by 7 (S. Yang, 2004);
- multiplicities bounded by 11 (M.D., W. Jarnicki, 2005);
- homogeneous multiplicities bounded by 20 (C. Ciliberto, R. Miranda, 2000);
- homogeneous multiplicities bounded by 42 (M.D., 2006).

Linear systems generated by monomials

Definition. Let B be a finite set of monomials, let $p_{1}, \ldots, p_{r} \in \mathbb{K}^{2}$, let $m_{1}, \ldots, m_{r} \in \mathbb{N}$. Define

$$
\begin{aligned}
& \mathcal{L}_{B}\left(m_{1} p_{1}, \ldots, m_{r} p_{r}\right)= \\
& \quad\left\{f=\sum_{\beta \in B} c_{\beta} X^{\beta} \mid \operatorname{mult}_{p_{i}} f \geq m_{i}, i=1, \ldots, r\right\} .
\end{aligned}
$$

Define the dimension and the expected dimension of the space of curves $\mathcal{L}_{B}\left(m_{1}, \ldots, m_{r}\right)$ as follows $\operatorname{dim} \mathcal{L}_{B}\left(m_{1}, \ldots, m_{r}\right)=\min _{\left\{p_{i}\right\} \subset \mathbb{K}^{2}} \operatorname{dim} \mathcal{L}_{B}\left(m_{1} p_{1}, \ldots, m_{r} p_{r}\right)-1$, $\operatorname{edim} \mathcal{L}_{B}\left(m_{1}, \ldots, m_{r}\right)=\max \left\{\# B-\sum_{i=1}^{r}\binom{m_{i}+1}{2}-1,-1\right\}$

Definition. We say that system of curves $L=\mathcal{L}_{B}\left(m_{1}, \ldots, m_{r}\right)$ is non-special if $\operatorname{dim} L=\operatorname{edim} L$.
We can identify $\mathcal{L}_{d}\left(m_{1}, \ldots, m_{r}\right)$ with $\mathcal{L}_{B}\left(m_{1}, \ldots, m_{r}\right)$ where $B=\left\{X^{\beta}:|\beta| \leq d\right\}$.

Let

$$
\varphi_{(j, \alpha)}: \mathbb{K}[X] \ni f \mapsto \frac{\partial^{|\alpha|} f}{\partial X^{\alpha}}\left(P_{j}\right) \in \mathbb{K}\left[P_{j}^{X}, P_{j}^{Y}\right]
$$

Consider the following map

$$
\varphi=\left(\left.\varphi_{(j, \alpha)}\right|_{\operatorname{span}(B)}\right)_{|\alpha|<m_{j}, j=1, \ldots, r}
$$

We have

$$
\mathcal{L}_{B}\left(m_{1}, \ldots, m_{r}\right) "=" \operatorname{ker} \varphi
$$

We can compute $\operatorname{dim} \mathcal{L}_{B}\left(m_{1}, \ldots, m_{r}\right)$ as

$$
\# B-\operatorname{rank} \mathcal{M}_{B}\left(m_{1}, \ldots, m_{r}\right)-1
$$

where

$$
\mathcal{M}_{B}\left(m_{1}, \ldots, m_{r}\right)=\left[\varphi_{(j, \alpha)}\left(X^{\beta}\right)\right]_{|\alpha|<m_{j}, j=1, \ldots, r}^{\beta \in B}
$$

Reduction method

Let B be a finite set of monomials, $m_{1}, \ldots, m_{r} \in \mathbb{N}$, let $B=B_{1} \cup B_{2}, B_{1} \cap B_{2}=\varnothing$.

Consider the matrix $\mathcal{M}_{B}\left(m_{1}, \ldots, m_{r}\right)$ in the following form:

$$
\left[\begin{array}{c|c}
\mathcal{M}_{B_{1}}\left(m_{1}, \ldots, m_{r-1}\right) & K_{1} \\
\hline K_{2} & \mathcal{M}_{B_{2}}\left(m_{r}\right)
\end{array}\right]
$$

Theorem. Let B be a finite set of monomials, $m_{1}, \ldots, m_{r} \in \mathbb{N}$, let $B=B_{1} \cup B_{2}, B_{1} \cap B_{2}=\varnothing, \# B_{2}=\binom{m_{r}+1}{2}$. Assume that the following hold:
(1) the system $\mathcal{L}_{B_{2}}\left(m_{r}\right)$ is non-special,
(2) there is no $P \subset B$ satisfying $\# P=\# B_{2}, P \neq B_{2}$,
$\mathcal{L}_{P}\left(m_{r}\right)$ being non-special and

$$
\sum_{\alpha \in P} \alpha=\sum_{\alpha \in B_{2}} \alpha
$$

Then $\operatorname{dim} \mathcal{L}_{B}\left(m_{1}, \ldots, m_{r}\right) \leq \operatorname{dim} \mathcal{L}_{B_{1}}\left(m_{1}, \ldots, m_{r-1}\right)$.
Theorem. Let $\# B=\binom{m+1}{2}$. Then $\mathcal{L}_{B}(m)$ is non-special if and only if B does not lie on a curve of degree $m-1$.

"Reduction method"

Reducing the "tail":

- complicated proof,
- algorithmic and easy to use,
- computation of dimension of $\mathcal{L}_{d}\left(m^{\times k}\right)$ takes $\Theta\left(\left(m^{2}\right)^{3}\right)$ instead of $\Theta\left(\left(k m^{2}\right)^{3}\right)$ steps,
- very often insufficient.
"Cutting":
- easy to prove
- hard to find an algorithm,
- possible connection with symplectic packing,
- provides nice proofs,
- possible "rescaling".

