On the Uniformity of Zero-Dimensional Complete Intersections

Anthony V. Geramita and Martin Kreuzer

martin.kreuzer@uni-dortmund.de

Effect 2006
Brenna, September 5, 2006
1. Uniformity of Point Sets
1. Uniformity of Point Sets

\mathbb{P}^n projective space over a field K

$X = \{p_1, \ldots, p_s\}$ finite set of points in \mathbb{P}^n
1. Uniformity of Point Sets

\(\mathbb{P}^n \) projective space over a field \(K \)

\(X = \{ p_1, \ldots, p_s \} \) finite set of points in \(\mathbb{P}^n \)

\(I_X \subset P = K[x_0, \ldots, x_n] \) homogeneous vanishing ideal of \(X \)

\(R = P/I \) homogeneous coordinate ring of \(X \)

\(HF_X : \mathbb{Z} \rightarrow \mathbb{Z} \) \((i \mapsto \dim_K(R_i)) \) Hilbert function of \(X \)
1. Uniformity of Point Sets

\(\mathbb{P}^n \) projective space over a field \(K \)

\(\mathbb{X} = \{ p_1, \ldots, p_s \} \) finite set of points in \(\mathbb{P}^n \)

\(I_\mathbb{X} \subset P = K[x_0, \ldots, x_n] \) homogeneous vanishing ideal of \(\mathbb{X} \)

\(R = P/I \) homogeneous coordinate ring of \(\mathbb{X} \)

\(\text{HF}_\mathbb{X} : \mathbb{Z} \rightarrow \mathbb{Z} \quad (i \mapsto \dim_K(R_i)) \) Hilbert function of \(\mathbb{X} \)

\(\mathbb{X} \) is called \((i, j) \)-uniform iff \(\text{HF}_\mathbb{Y}(j) = \text{HF}_\mathbb{X}(j) \) for all \(\mathbb{Y} \subset \mathbb{X} \) consisting of \(s - i \) points
Let $a_X = \max\{i \mid HF_X(i) < s\}$ be the Castelnuovo-Mumford regularity of R.
Let $a_X = \max\{i \mid HF_X(i) < s\}$ be the Castelnuovo-Mumford regularity of R.

1. X is $(1, a_X)$-uniform iff X has the **Cayley-Bacharach property** (i.e. every hypersurface of degree a_X which passes through all points of X but one passes also through the last point).
Let $a_X = \max\{i \mid HF_X(i) < s\}$ be the Castelnuovo-Mumford regularity of R.

1. X is $(1, a_X)$-uniform iff X has the **Cayley-Bacharach property** (i.e. every hypersurface of degree a_X which passes through all points of X but one passes also through the last point)

2. X is (i, j)-uniform for all $1 \leq i < s$ and $1 \leq j \leq a_X$ iff X is in **uniform position** (e.g. if X is the generic hyperplane section of an irreducible curve)
Special Cases of (i, j)-Uniformity

Let $a_X = \max\{i \mid HF_X(i) < s\}$ be the Castelnuovo-Mumford regularity of R.

1. X is $(1, a_X)$-uniform iff X has the **Cayley-Bacharach property** (i.e. every hypersurface of degree a_X which passes through all points of X but one passes also through the last point)

2. X is (i, j)-uniform for all $1 \leq i < s$ and $1 \leq j \leq a_X$ iff X is in **uniform position** (e.g. if X is the generic hyperplane section of an irreducible curve)

3. If X spans \mathbb{P}^n then X is $(s - n - 1, 1)$-uniform iff X is in **linearly general position** (i.e. any $n + 1$ points of X span \mathbb{P}^n)
The Region of Uniformity

If \(X \) is \((i, j)\)-uniform then \(X \) is also \((i - 1, j)\)-uniform and \((i, j - 1)\)-uniform.
The Region of Uniformity

If X is (i, j)-uniform then X is also $(i - 1, j)$-uniform and $(i, j - 1)$-uniform.

If X is (i, j)-uniform then $i \leq s - HF_X(j)$.
The Region of Uniformity

If X is (i, j)-uniform then X is also $(i - 1, j)$-uniform and $(i, j - 1)$-uniform.

If X is (i, j)-uniform then $i \leq s - \text{HF}_X(j)$.

There are a maximal and an actual region of uniformity of X.

4-b
If \(X \) is \((i, j)\)-uniform then \(X \) is also \((i - 1, j)\)-uniform and \((i, j - 1)\)-uniform.

If \(X \) is \((i, j)\)-uniform then \(i \leq s - \text{HF}_X(j) \).

There are a maximal and an actual \textbf{region of uniformity} of \(X \).
2. The General Cayley-Bacharach Conjecture

The following conjecture is due to D. Eisenbud, M. Green and J. Harris. It has been open since more than 10 years.
2. The General Cayley-Bacharach Conjecture

The following conjecture is due to D. Eisenbud, M. Green and J. Harris. It has been open since more than 10 years.

Conjecture CB12. Let \(Y \subseteq \mathbb{P}^n \) be a subscheme of a zero-dimensional complete intersection of hypersurfaces of degrees \(d_1 \leq \cdots \leq d_n \). If \(Y \) fails to impose independent conditions on hypersurfaces of degree \(m \), then we have \(\text{deg}(Y) \geq e \cdot d_t \cdot d_{t+1} \cdots d_n \) where \(t \) and \(e \) are defined by the relations

\[
\sum_{i=t}^{n} (d_i - 1) \leq m + 1 < \sum_{i=t-1}^{n} (d_i - 1) \quad \text{and} \quad e = m + 2 - \sum_{i=t}^{n} (d_i - 1)
\]

(Notice that we have corrected the definition of \(e \) given in [EGH2], which was an obvious misprint.)
Hilbert Function Version of the GCB Conjecture
Hilbert Function Version of the GCB Conjecture

Let $X \subseteq \mathbb{P}^n_K$ be a zero-dimensional complete intersection of type (d_1, \ldots, d_n), where $d_1 \leq \cdots \leq d_n$. It is conjectured that:

- (\mathcal{I}_1) Let $1 \leq e < d_{n-1}$ and $Y \subseteq X$ be such that
 \[\Delta \text{HF}_Y(e + d_n - 2) \neq 0. \]
 Then we have $\deg(Y) \geq e \cdot d_n$.

- (\mathcal{I}_2) Let $1 \leq e < d_{n-2}$ and $Y \subseteq X$ be such that
 \[\Delta \text{HF}_Y(e + d_{n-1} + d_n - 3) \neq 0. \]
 Then we have $\deg(Y) \geq e \cdot d_{n-1} \cdot d_n$.

 :

- (\mathcal{I}_{n-1}) Let $1 \leq e < d_1$ and $Y \subseteq X$ be such that
 \[\Delta \text{HF}_Y(e + d_2 + \cdots + d_n - n) \neq 0. \]
 Then we have $\deg(Y) \geq e \cdot d_2 \cdots d_n$.

The GCB Conjecture can be translated to a conjecture about the region of uniformity of a 0-dimensional complete intersection $X \subseteq \mathbb{P}^n$ of type (d_1, \ldots, d_n), where $d_1 \leq \cdots \leq d_n$. It is conjectured that:
The GCB Conjecture can be translated to a conjecture about the region of uniformity of a 0-dimensional complete intersection \(X \subseteq \mathbb{P}^n\) of type \((d_1, \ldots, d_n)\), where \(d_1 \leq \cdots \leq d_n\). It is conjectured that:

- **(U\(_1\))** Let \(1 \leq e < d_{n-1}\). Then \(X\) is
 \((e \cdot d_n - 1, a_X - e - d_n + 3)\)-uniform.

- **(U\(_2\))** Let \(1 \leq e < d_{n-2}\). Then \(X\) is
 \((e \cdot d_{n-1} d_n - 1, a_X - e - d_{n-1} - d_n + 4)\)-uniform.

- **(U\(_{n-1}\))** Let \(1 \leq e < d_1\). Then \(X\) is
 \((e \cdot d_2 \cdots d_n - 1, a_X - e - d_2 - \cdots - d_n + n + 1)\)-uniform.

Here we have \(a_X = d_1 + \cdots + d_n - n - 1\), of course.
Examples for the Uniformity Conjecture

Example 1. Let $X \subset \mathbb{P}^2$ be a complete intersection of type $(4, 7)$.
Example 1. Let $X \subset \mathbb{P}^2$ be a complete intersection of type $(4, 7)$.

The dotted region is the conjectured region of uniformity.
Example 2. Let $X \subset \mathbb{P}^3$ be a complete intersection of type $(2, 3, 5)$.
Example 2. Let $X \subset \mathbb{P}^3$ be a complete intersection of type $(2, 3, 5)$.

The dotted region is again the conjectured region of uniformity. The bold line bounds the maximal region of uniformity.
Example 2. Let $X \subset \mathbb{P}^3$ be a complete intersection of type $(2, 3, 5)$.

The dotted region is again the conjectured region of uniformity. The bold line bounds the maximal region of uniformity.

In the following we shall prove special cases of a slightly stronger conjecture. W.l.o.g. let $x_0 \in R$ be a non-zerodivisor. The ring $A = R/(x_0)$ is called the Artinian reduction of R.
Let $P = K[x_1, \ldots, x_n]$ be standard graded, let $(f_1, \ldots, f_n) \in P^n$ be a homogeneous regular sequence, let $I = \langle f_1, \ldots, f_s \rangle$, and let $d_i = \deg(f_i)$ for $i = 1, \ldots, n$. Assume that $d_1 \leq \cdots \leq d_n$, and let $J \supseteq I$ be an ideal. It is conjectured that:

1. **(A_1)** Let $1 \leq e < d_{n-1}$, and suppose that $HF_{P/J}(e + d_n - 2) \neq 0$. Then we have $\dim_K(P/J) \geq e \cdot d_n$.

2. **(A_2)** Let $1 \leq e < d_{n-2}$, and suppose that $HF_{P/J}(e + d_{n-1} + d_n - 3) \neq 0$. Then $\dim_K(P/J) \geq e \cdot d_{n-1} \cdot d_n$.

3. **(A_{n-1})** Let $1 \leq e < d_1$, and suppose that $HF_{P/J}(e + d_2 + \cdots + d_n - n) \neq 0$. Then we have $\dim_K(P/J) \geq e \cdot d_2 \cdots d_n$.

3. The First Interval \((A_1)\)

Proposition. Let \(A = P/I\) be a zero-dimensional complete intersection of type \((d_1, \ldots, d_n)\), where \(d_1 \leq \cdots \leq d_n\), let
\[1 \leq e \leq d_{n-1},\] and let \(J \supseteq I\) be a homogeneous ideal in \(P\) such that
\[HF_{P/J}(e + d_n - 2) \neq 0.\] Then we have
\[\dim_K(P/J) \geq e d_n.\]

In other words, the AU Conjecture is true in the interval \(A_1\) and for
\(e = 1\) in the interval \(A_2\).
Proposition. Let $A = P/I$ be a zero-dimensional complete intersection of type (d_1, \ldots, d_n), where $d_1 \leq \cdots \leq d_n$, let $1 \leq e \leq d_{n-1}$, and let $J \supseteq I$ be a homogeneous ideal in P such that $HF_{P/J}(e + d_n - 2) \neq 0$. Then we have $\dim_K(P/J) \geq e d_n$.

In other words, the AU Conjecture is true in the interval A_1 and for $e = 1$ in the interval A_2.

Method of Proof. (1) Show that $HF_{P/J}(d_n - 1) \geq e$.
3. The First Interval \((A_1)\)

Proposition. Let \(A = P/I\) be a zero-dimensional complete intersection of type \((d_1, \ldots, d_n)\), where \(d_1 \leq \cdots \leq d_n\), let \(1 \leq e \leq d_{n-1}\), and let \(J \supseteq I\) be a homogeneous ideal in \(P\) such that \(HF_{P/J}(e + d_n - 2) \neq 0\). Then we have \(\dim_K(P/J) \geq e \cdot d_n\).

In other words, the \(AU\) Conjecture is true in the interval \(A_1\) and for \(e = 1\) in the interval \(A_2\).

Method of Proof. (1) Show that \(HF_{P/J}(d_n - 1) \geq e\).

Let \(i \geq d_n - 1\) and \(HF_{P/J}(i) < e\). Then **Macaulay’s Growth Theorem** shows \(HF_{P/J}(i + 1) \leq HF_{P/J}(i)\).

If there is an \(i \in \{d_n - 1, \ldots, e + d_n - 3\}\) for which equality holds, we have a case of maximal growth in Macaulay’s Growth Theorem.
Then Gotzmann’s Persistence Theorem implies that \(\tilde{J} = \langle J_{\leq i+1} \rangle \) satisfies \(\text{HF}_{P/\tilde{J}}(j) = \text{HF}_{P/\tilde{J}}(i) \) for all \(j \geq i \).

Therefore we get \(\dim(P/\tilde{J}) = 1 \) which contradicts \(I \subseteq \tilde{J} \) since all generators of \(I \) have degree \(\leq d_n \leq i + 1 \).
Then Gotzmann’s Persistence Theorem implies that
\[\tilde{J} = \langle J_{\leq i+1} \rangle \]
satisfies \(\text{HF}_{P/\tilde{J}}(j) = \text{HF}_{P/\tilde{J}}(i) \) for all \(j \geq i \).

Therefore we get \(\dim(P/\tilde{J}) = 1 \) which contradicts \(I \subseteq \tilde{J} \) since all generators of \(I \) have degree \(\leq d_n \leq i + 1 \).

(2) Next we show that \(\text{HF}_{P/J} \) is greater or equal to

\[H(i) \]

\[1 \quad e-1 \quad d_n-1 \quad e+d_n-1 \]
This follows again from Macaulay’s Growth Theorem.
Finally, counting dimensions, we get $\dim_K P/J \geq ed_n$.
This follows again from Macaulay’s Growth Theorem.

Finally, counting dimensions, we get \(\dim_K P/J \geq ed_n \).

Corollary. The Artinian Uniformity Conjecture holds for \(n = 2 \).

In particular, the General Cayley-Bacharach Conjecture holds in \(\mathbb{P}^2 \).
4. The Last Interval \((A_{n-1})\)
4. The Last Interval \((A_{n-1})\)

Proposition. Let \(A = P/I\) be a zero-dimensional complete intersection of type \((d_1, \ldots, d_n)\), where \(d_1 \leq \cdots \leq d_n\), let \(1 \leq e \leq d_1 - 1\), and let \(J \supseteq I\) be a homogeneous ideal in \(P\) such that \(\text{HF}_{P/J}(e + d_2 + \cdots + d_n - n) \neq 0\). Then we have

\[
\dim_K(P/J) \geq e d_2 \cdots d_n.
\]

In particular, the AU Conjecture holds true in the last interval.
4. The Last Interval \((A_{n-1})\)

Proposition. Let \(A = P/I\) be a zero-dimensional complete intersection of type \((d_1, \ldots, d_n)\), where \(d_1 \leq \cdots \leq d_n\), let \(1 \leq e \leq d_1 - 1\), and let \(J \supseteq I\) be a homogeneous ideal in \(P\) such that \(\text{HF}_{P/J}(e + d_2 + \cdots + d_n - n) \neq 0\). Then we have \(\dim_K(P/J) \geq e d_2 \cdots d_n\).

In particular, the AU Conjecture holds true in the last interval.

Method of Proof: Consider the linked ideal

\[
J' = \{ f \in P \mid f \cdot J \subseteq I \}.
\]

Then \(\text{HF}_{P/J}(e + d_2 + \cdots + d_n - n) \neq 0\) implies \(J'_{d_1 - e} \neq 0\).
Thus the **depth sequence** of J' is componentwise less or equal to $(d_1 - e, d_2, \ldots, d_n)$ and J' contains a complete intersection of type $(d_1 - e, d_2, \ldots, d_n)$.
Thus the depth sequence of J' is componentwise less or equal to $(d_1 - e, d_2, \ldots, d_n)$ and J' contains a complete intersection of type $(d_1 - e, d_2, \ldots, d_n)$.

Corollary 1. The Artinian Uniformity Conjecture holds for $n = 3$. In particular, the General Cayley-Bacharach Conjecture holds in \mathbb{P}^3.
Thus the **depth sequence** of J' is componentwise less or equal to $(d_1 - e, d_2, \ldots, d_n)$ and J' contains a complete intersection of type $(d_1 - e, d_2, \ldots, d_n)$.

Corollary 1. The Artinian Uniformity Conjecture holds for $n = 3$. In particular, the General Cayley-Bacharach Conjecture holds in \mathbb{P}^3.

Corollary 2. The Artinian Uniformity Conjecture is true for $n = 4$ and $d_1 = d_2 = 2$. In particular, the General Cayley Bacharach Conjecture holds true for complete intersections of type $(2, 2, d_3, d_4)$ in \mathbb{P}^4, where $2 \leq d_3 \leq d_4$.
Further Results
Further Results

Proposition. The Artinian Uniformity Conjecture is true in the interval \((A_{n-2})\) for all \(d_1 \leq e < d_2\).

The case \(e < d_1\) is still open.
Further Results

Proposition. The Artinian Uniformity Conjecture is true in the interval \((A_{n-2})\) for all \(d_1 \leq e < d_2\).

The case \(e < d_1\) is still open.

Proposition. The General Cayley-Bacharach Conjecture is true for complete intersections of type \((2, d_2, d_3, d_4)\) in \(\mathbb{P}^4\) if the quadric is reducible.
Let $K = \mathbb{F}_q$ be a finite field. The image of the map

$$\Phi_j : \mathbb{R}_j \rightarrow K^s$$

defined by $\Phi_j(f) = (f(p_1), \ldots, f(p_s))$ is called the j^{th} generalized Reed-Muller code (or the j^{th} evaluation code) $C_j(X)$ associated to X.

5. An Application to Coding Theory
5. An Application to Coding Theory

Let $K = \mathbb{F}_q$ be a finite field. The image of the map

$$\Phi_j : R_j \rightarrow K^s$$

defined by $\Phi_j(f) = (f(p_1), \ldots, f(p_s))$ is called the j^{th} generalized Reed-Muller code (or the j^{th} evaluation code) $C_j(X)$ associated to X.

Proposition. The minimal distance of $C_j(X)$ is

$$d = 1 + \max\{i \mid X \text{ is } (i, j)-\text{uniform}\}.$$
A zero-dimensional subscheme $X \subset \mathbb{P}^n$ is called \textbf{level} if the Artinian reduction $\overline{R} = R/(x_0)$ of its homogeneous coordinate ring R satisfies $\text{socle}(\overline{R}) = \overline{R}_{a_X+1}$.
A zero-dimensional subscheme $X \subset \mathbb{P}^n$ is called **level** if the Artinian reduction $\overline{R} = R/(x_0)$ of its homogeneous coordinate ring R satisfies $\text{socle}(\overline{R}) = \overline{R}_{a_X+1}$.

Proposition. Let $X \subseteq \mathbb{P}^n_K$ be a level scheme, and let $i \in \{1, \ldots, a_X\}$. Then X is $(i, a_X + 1 - i)$-uniform.
A zero-dimensional subscheme \(X \subset \mathbb{P}^n \) is called level if the Artinian reduction \(\overline{R} = R/(x_0) \) of its homogeneous coordinate ring \(R \) satisfies \(\text{socle}(\overline{R}) = \overline{R}_{a_X + 1} \).

Proposition. Let \(X \subseteq \mathbb{P}^n_K \) be a level scheme, and let \(i \in \{1, \ldots, a_X\} \). Then \(X \) is \((i, a_X + 1 - i)\)-uniform.

Example 1. Let \(X \subset \mathbb{P}^2 \) be a complete intersection of type \((5, 5)\).
The dotted region of uniformity is due to the level scheme property.
The asterisks mark the region of uniformity coming from GCB.
The dotted region of uniformity is due to the level scheme property. The asterisks mark the region of uniformity coming from GCB.

Example 2. Let \(X \subset \mathbb{P}^3 \) be a complete intersection of type \((3, 3, 4)\).
Example 3. Let $X \subset \mathbb{P}^4$ be a complete intersection of type $(2, 2, 3, 3)$.

References

Thank you for your attention!