Boundedness and compactness of Berezin-Toeplitz operators

L. A. Coburn

Abstract

For the Berezin-Toeplitz operators on the Hilbert space $H^2(\mathbf{C}^n, d\mu)$ of Gaussian square-integrable entire functions on complex *n*-space, \mathbf{C}^n , I discuss known criteria for boundedness and compactness. In this discussion the standardized Gaussian measure is given by $d\mu = (2\pi)^{-n} \exp\{-|z|^2/2\} dv(z)$. Considerable progress has been made in recent papers [CIL, BCI]. Here, $\mathbf{B} =$ Wolfram Bauer, $\mathbf{I} =$ Josh Isralowitz, $\mathbf{L} =$ Bo Li. For g in $L^2(\mathbf{C}^n, d\mu)$ and s > 0, we consider the "heat transform"

(*)
$$\widetilde{g}^{(s)}(a) = \int_{\mathbf{C}^n} g(w) exp\{-|w-a|^2/4s\} dv(w) (4\pi s)^{-n}$$

In [CIL], we showed that, for g in BMO¹, the Berezin-Toeplitz operator T_g is bounded (compact) if and only if the *Berezin transform* $\tilde{g} \equiv \tilde{g}^{(1/2)}$ is bounded (vanishes at infinity). In [BCI], we used the results of [CIL] and a refined version of results with Charles Berger in [BC₂] to show, again for g in BMO¹, that the following three statements are equivalent: (a) T_g is compact, (b) $\tilde{g}^{(t_0)}$ vanishes at infinity (is in $C_0(\mathbf{C}^n)$) for some $t_0 > 0$ and (c) $\tilde{g}^{(t)}$ is in $C_0(\mathbf{C}^n)$ for all t > 0.

STATE UNIVERSITY OF NEW YORK, BUFFALO, NY, USA *E-mail address*: lcoburn@buffalo.edu