Effective Bertini theorem and formulas for multiplicity and the local Łojasiewicz exponent

Tomasz Rodak, Adam Różycki, Stanisław Spodzieja

March 25, 2022

Classical Bertini theorem

Theorem

Let X be a nonsingular closed subvariety of \mathbb{P}_{k}^{n}, where k is an algebraically closed field. Then there exists a hyperplane $H \subset \mathbb{P}_{k}^{n}$ not containing X and such that the intersection $H \cap X$ is regular at every point. Furthermore, the set of hyperplanes with this property forms an open dense subset of the complete linear system $|H|$ considered as a projective space.

Algebraic cone C_{0}, Total degree $\delta(V)$

- f_{1}, \ldots, f_{r} - homogeneous polynomials,

$$
C_{0}=V\left(f_{1}, \ldots, f_{r}\right)-\text { algebraic cone. }
$$

Algebraic cone C_{0}, Total degree $\delta(V)$

- f_{1}, \ldots, f_{r} - homogeneous polynomials,

$$
C_{0}=V\left(f_{1}, \ldots, f_{r}\right)-\text { algebraic cone }
$$

- $V \subset \mathbb{C}^{m}$ - algebraic set of pure dimension, $H \subset \mathbb{C}^{m}$ - generic affine subspace, $\operatorname{dim} H=m-\operatorname{dim} V$,

$$
\operatorname{deg} V=\#(V \cap H)-\text { degree of } V \text {. }
$$

Algebraic cone C_{0}, Total degree $\delta(V)$

- f_{1}, \ldots, f_{r} - homogeneous polynomials,

$$
C_{0}=V\left(f_{1}, \ldots, f_{r}\right) \text { - algebraic cone. }
$$

- $V \subset \mathbb{C}^{m}$ - algebraic set of pure dimension, $H \subset \mathbb{C}^{m}$ - generic affine subspace, $\operatorname{dim} H=m-\operatorname{dim} V$,

$$
\operatorname{deg} V=\#(V \cap H)-\text { degree of } V \text {. }
$$

- $V \subset \mathbb{C}^{m}$ - algebraic set,
$V=V_{1} \cup \cdots \cup V_{s}$ - decomposition of V into irreducible components,

$$
\delta(V)=\operatorname{deg} V_{1}+\cdots+\operatorname{deg} V_{s}-\text { total degree of } V .
$$

Bertini's weak theorem

- For any $a \in \mathbb{C}$, denote

$$
N_{a}\left(x_{1}, \ldots, x_{m}\right)=x_{1}+a x_{2}+\cdots+a^{m-1} x_{m} .
$$

Bertini's weak theorem

- For any $a \in \mathbb{C}$, denote

$$
N_{a}\left(x_{1}, \ldots, x_{m}\right)=x_{1}+a x_{2}+\cdots+a^{m-1} x_{m}
$$

Theorem

$C_{0} \subset \mathbb{C}^{m}$ - algebraic cone of pure dimension $q \geq 1, \delta\left(C_{0}\right) \leq d$.
Then the set

$$
A=\left\{a \in \mathbb{C}: C_{0} \cap V\left(N_{a}\right) \text { - improper }\right\}
$$

is finite. Moreover,

$$
\# A \leq d(m-q)
$$

Bertini's weak theorem

The properness of the intersection $C_{0} \cap V\left(N_{a}\right)$ in the above theorem cannot be replaced by transversality, as shown in the following example.

Bertini's weak theorem

Example

Let

$$
C=\left\{(x, y, z) \in \mathbb{C}^{3}: y^{2}-4 x z=0\right\}
$$

Obviously $C \backslash\{(0,0,0)\}$ is a smooth cone of dimension 2. Let $a \in \mathbb{C}$

$$
N_{a}(x, y, z)=x+a y+a^{2} z
$$

Then $C \cap V\left(N_{a}\right) \neq \emptyset$ for any $a \in \mathbb{C}$. Moreover, if $(0,0,0) \neq\left(x_{0}, y_{0}, z_{0}\right) \in C \cap V\left(N_{a}\right)$, then $z_{0} \neq 0, a=\frac{-y_{0}}{2 z_{0}}$ and $x_{0}=\frac{y_{0}^{2}}{4 z_{0}}$. Therefore

$$
N_{a}(x, y, z)=x+\frac{-y_{0}}{2 z_{0}} y+\frac{y_{0}^{2}}{4 z_{0}^{2}} z=\frac{-1}{4 z_{0}}\left(-4 z_{0} x+2 y_{0} y-4 x_{0} z\right)
$$

and $T_{\left(x_{0}, y_{0}, z_{0}\right)} C=V\left(N_{a}\right)$. This shows that the intersection $C \cap V\left(N_{a}\right)$ is not transversal at $\left(x_{0}, y_{0}, z_{0}\right)$.

System of independent linear functions

- $\mathbb{L}(m, 1)=\left\{N: \mathbb{C}^{m} \rightarrow \mathbb{C}, N\right.$ - linear map $\}$.

System of independent linear functions

- $\mathbb{L}(m, 1)=\left\{N: \mathbb{C}^{m} \rightarrow \mathbb{C}, N\right.$ - linear map $\}$.
- A system of functions $N_{1}, \ldots, N_{s} \in \mathbb{L}(m, 1), s \geq m$, we call independent if for any sequence $1 \leq i_{1}<\cdots<i_{m} \leq s$ the system $N_{i_{1}}, \ldots, N_{i_{m}}$ is linearly independent over \mathbb{C}.

A crucial role in the proof of Bertini theorem plays the following

Lemma

Let m, q, d be positive integers, $m \geq 2, m \geq q$. Let $\ell=d(m-q)+q$, and let $N_{j}: \mathbb{C}^{m} \rightarrow \mathbb{C}, 1 \leq j \leq \ell$, be a system of independent linear functions. Then for any algebraic cone $C_{0} \subset \mathbb{C}^{m}$ with $\operatorname{dim} C_{0} \leq q$ and $\delta\left(C_{0}\right) \leq d$, there exist $1 \leq i_{1}<\cdots<i_{q} \leq \ell$ such that

$$
C_{0} \cap V\left(N_{i_{1}}, \ldots, N_{i_{q}}\right)=\{0\} .
$$

Effective Bertini theorem (I)

Theorem

Let d, m, q be positive integers such that $m \geq q$, let $\ell=2 d^{m-q}[(m-q)(d-1)+1]^{q-1}+m-1$, and let $N_{j} \in \mathbb{L}(m, 1)$, $1 \leq j \leq \ell$, be a system of independent linear functions. Then
$E_{j_{1}, \ldots, j_{m-1}}=$

$$
=\left\{x \in \mathbb{C}^{m}: \exists_{a \in \mathbb{C}^{m} \backslash\{0\}} N_{j_{1}}(a)=\cdots=N_{j_{m-1}}(a)=0, a x^{T}=0\right\}
$$

for $1 \leq j_{1}<\cdots<j_{m-1} \leq \ell$ is a system of hyperplanes such that for any irreducible algebraic cone $V \subset \mathbb{C}^{m}, \operatorname{dim} V=q, \operatorname{deg} V \leq d$ such that $V \backslash\{0\}$ is smooth, there are $1 \leq j_{1}<\cdots<j_{m-1} \leq \ell$ such that the intersection $X=V \cap E_{j_{1}, \ldots, j_{m-1}}$ is transversal at any point $x \in X \backslash\{0\}$ and the set $X \backslash\{0\}$ is smooth.

Effective Bertini theorem (I)

Remark

The assertion of the above theorem holds for the system of linear functions

$$
N_{j}\left(x_{0}, \ldots, x_{n}\right)=x_{0}+a_{j} x_{1}+\cdots+a_{j}^{n} x_{m},
$$

where $a_{j} \in \mathbb{C}, 1 \leq j \leq \ell$, are pairwise different numbers.

Effective Bertini theorem (II)

Theorem

Let d, m, q, s be positive integers such that $m \geq q$ and $q-1 \geq s$, let $\ell=d^{m-q}[(m-q)(d-1)+q-1]+m(q-1)-1$, and let $N_{j} \in \mathbb{L}(m(q-1), 1), 1 \leq j \leq \ell$, be a system of independent linear functions such that

$$
\begin{aligned}
& K_{s, j_{1}, \ldots, j_{m(q-1)-1}}=\left\{x \in \mathbb{C}^{m}: \exists_{a=\left(a_{1}, \ldots, a_{q-1}\right) \in\left(\mathbb{C}^{m}\right)^{q-1} \backslash\{0\}}\right. \\
& \left.N_{j_{1}}(a)=\cdots=N_{j_{m(q-1)-1}}(a)=0, a_{1} x^{T}=\cdots=a_{s} x^{T}=0\right\},
\end{aligned}
$$

for $1 \leq j_{1}<\cdots<j_{m-1} \leq \ell$ is a system of linear subspaces of dimension $m-s$. Then for any irreducible algebraic cone $V \subset \mathbb{C}^{m}$ with $\operatorname{dim} V=q$ and $\operatorname{deg} V \leq d$ such that $V \backslash\{0\}$ is smooth, there are $1 \leq j_{1}<\cdots<j_{m(q-1)-1} \leq \ell$ such that the intersection $X=V \cap K_{s, j_{1}, \ldots, j_{m(q-1)-1}}$ is transversal at any point $x \in X \backslash\{0\}$ and the set $X \backslash\{0\}$ is smooth.

Effective Bertini theorem (II)

Remark

To get the effectivity of selection of the subspaces $K_{s, j_{1}, \ldots, j_{m(q-1)-1}}$ and keep the formulation of Bertini theorem (II) simple, we assumed that these subspaces are orthogonal to a_{1}, \ldots, a_{q-1}. Of course, it is enough to assume that the subspaces $K_{s, j_{1}}, \ldots, j_{m(q-1)-1}$ are transverse to the subspaces spanning on vectors a_{1}, \ldots, a_{q-1}.

Comparison of estimates

Remark

For $d>1$ and $q<m$ the estimation of the number of linear functions ℓ in the Bertini theorem (II) is better than the one obtained by repeated use of the estimation of ℓ in the Bertini theorem (I). Indeed, using the Bertini theorem (I) s-times we need at least

$$
s-1+2 d^{m-q}[(m-q)(d-1)+1]^{q-1}+m-1
$$

linear functions N_{j}.

Comparison of estimates

Remark

Since (using Bernoulli's inequality),

$$
\begin{aligned}
& 2 d^{m-q}[(m-q)(d-1)+1]^{q-1}+m \geq d^{m-q}[(m-q)(d-1)(q-1)+1] \\
& \quad+m+d^{m-q}[(m-q)(d-1)+1]^{q-1} \\
& \geq d^{m-q}[(m-q)(d-1)+q-1]+m+2^{m-q}[m-q+1]^{q-1}
\end{aligned}
$$

it suffices to prove that $2^{m-q}[m-q+1]^{q-1} \geq m(q-2)$ for $2<q<m$ or equivalently that
$(m-q)+(q-1) \log _{2}(m-q+1) \geq \log _{2} m+\log _{2}(q-2)$ for $2<q<m$.
Obviously for $q=2$ the assertion holds. We check directly the above inequality for $m \geq q+1$ and obtain the assertion.

- U - neighborhood of $0 \in \mathbb{C}^{m}$,
$V \subset \mathbb{C}^{m}$ - algebraic set of pure dimension, $0 \in V$, $H \subset \mathbb{C}^{m}$ - generic affine subspace, sufficiently close to 0 , $\operatorname{dim} H=m-\operatorname{dim} V$.

$$
\operatorname{deg}_{0} V=\#(V \cap H \cap U) \text { - local degree of } V \text { at } 0 .
$$

Effective formula for local degree deg_{0}

- U - neighborhood of $0 \in \mathbb{C}^{m}$,
$V \subset \mathbb{C}^{m}$ - algebraic set of pure dimension, $0 \in V$, $H \subset \mathbb{C}^{m}$ - generic affine subspace, sufficiently close to 0 , $\operatorname{dim} H=m-\operatorname{dim} V$.

$$
\operatorname{deg}_{0} V=\#(V \cap H \cap U) \text { - local degree of } V \text { at } 0 .
$$

Corollary

For any algebraic set $V=V\left(f_{1}, \ldots, f_{r}\right) \subset \mathbb{C}^{m}$ of pure dimension q, where $f_{j} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, $\operatorname{deg} f_{j} \leq d$ for $1 \leq j \leq r$, we have

$$
\operatorname{deg}_{0} V=\max _{1 \leq j_{1}<\cdots<j_{m(q-1)-1} \leq \ell} \operatorname{deg}_{0}\left(V \cap K_{s, j_{1}, \ldots, j_{m(q-1)-1}}\right)
$$

for any $1 \leq s \leq q$.

Effective formula for multiplicity $i_{0}(f)$

- $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right), m \geq n$ - polynomial map, finite at 0 .

$$
i_{0}(f):=i\left(\text { graph } f \cdot\left(\mathbb{C}^{n} \times\{0\}\right) ;(0,0)\right)-\text { multiplicity of } f \text { at } 0
$$ $=$ improper intresection multiplicity of graph f and $\mathbb{C}^{n} \times\{0\}$ at $(0,0)$ (Achilles, Tworzewski, Winiarski, 1990).

- $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right), m \geq n$ - polynomial map, finite at 0 .

$$
i_{0}(f):=i\left(\text { graph } f \cdot\left(\mathbb{C}^{n} \times\{0\}\right) ;(0,0)\right)-\text { multiplicity of } f \text { at } 0
$$ $=$ improper intresection multiplicity of graph f and $\mathbb{C}^{n} \times\{0\}$ at $(0,0)$ (Achilles, Tworzewski, Winiarski, 1990).

- If $m=n$, then

$$
i_{0}(f)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{n} /(f)
$$

\mathcal{O}_{0}^{n} - the ring of germs of holomorphic functions at $0 \in \mathbb{C}^{n}$.

Effective formula for multiplicity $i_{0}(f)$

- $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right), m \geq n$ - polynomial map, finite at 0 .

$$
i_{0}(f):=i\left(\text { graph } f \cdot\left(\mathbb{C}^{n} \times\{0\}\right) ;(0,0)\right)-\text { multiplicity of } f \text { at } 0
$$

$=$ improper intresection multiplicity of graph f and $\mathbb{C}^{n} \times\{0\}$ at $(0,0)$ (Achilles, Tworzewski, Winiarski, 1990).

- If $m=n$, then

$$
i_{0}(f)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{n} /(f)
$$

\mathcal{O}_{0}^{n} - the ring of germs of holomorphic functions at $0 \in \mathbb{C}^{n}$.

- (S. Spodzieja, 2000)

If $m>n$, then:

1) $i_{0}(f) \leq \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{n} /(L \circ f)$,
2) $i_{0}(f)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{n} /(L \circ f)$ for the generic $L \in \mathbb{L}(m, n)$,
3) $i_{0}(f)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{n} /(L \circ f) \quad \Leftrightarrow \quad V(L) \cap C_{0}(f(U))=\{0\}$,
$U \subset \mathbb{C}^{n}$ - sufficiently small neighbourhood of 0 ,
$C_{0}(f(U))$ - tangent cone to the set $f(U)$.

Effective formula for multiplicity $i(f)$

Theorem

Let $\ell=d(m-n)+n$. For any independent system

$$
L_{j} \in \mathbb{L}(m, 1), \quad 1 \leq j \leq \ell
$$

and any polynomial mapping $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)$, finite at 0 , with $\operatorname{deg}_{0} C_{0}(f(U))=d$ we have

$$
i_{0}(f)=\min _{1 \leq i_{1}<\cdots<i_{n} \leq \ell} \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{n} /\left(\left(L_{i_{1}}, \ldots, L_{i_{n}}\right) \circ f\right)
$$

Effective formula for multiplicity $i_{0}(f)$

Example

Let $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be a polynomial mapping defined by

$$
f(x, y)=\left(x^{2}, x y, y^{3}\right)
$$

Obviously f is finite at 0 . Put $P(X, Y, Z)=X^{3} Z^{2}-Y^{6}$. Then $P\left(x^{2}, x y, y^{3}\right)=0$ and

$$
C_{0}(f(U))=\left\{(X, Y, Z) \in \mathbb{C}^{3}: X Z=0\right\} .
$$

Hence $d=\operatorname{deg}_{0} C_{0}(f(U))=2$ and $\ell=2(3-2)+2=4$. Let

$$
\begin{aligned}
& L_{1}(X, Y, Z)=X \\
& L_{2}(X, Y, Z)=Y \\
& L_{3}(X, Y, Z)=Z \\
& L_{4}(X, Y, Z)=X+Y+Z .
\end{aligned}
$$

Effective formula for multiplicity $i_{0}(f)$

Example

The system $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$ is independent and we have $\binom{4}{2}=6$ possibilities. Namely

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(\left(L_{1}, L_{2}\right) \circ f\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(x^{2}, x y\right)=+\infty \\
& \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(\left(L_{1}, L_{3}\right) \circ f\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(x^{2}, y^{3}\right)=6 \\
& \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(\left(L_{1}, L_{4}\right) \circ f\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(x^{2}, x y+y^{3}\right)=6 \\
& \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(\left(L_{2}, L_{3}\right) \circ f\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(x y, y^{3}\right)=+\infty \\
& \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(\left(L_{2}, L_{4}\right) \circ f\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(x y, x^{2}+y^{3}\right)=5 \\
& \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(\left(L_{3}, L_{4}\right) \circ f\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{0}^{2} /\left(y^{3}, x^{2}+x y\right)=6
\end{aligned}
$$

Therefore

$$
i_{0}(f)=5
$$

- $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right), m \geq n$ - polynomial map, finite at 0 .

$$
\mathcal{L}_{0}(f)=\inf \left\{\nu \in \mathbb{R}_{+}: \exists_{c>0} \quad|f(z)| \geq C|z|^{\nu},|z| \rightarrow 0\right\}
$$

- local Łojasiewicz exponent of f at 0 .
- $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right), m \geq n$ - polynomial map, finite at 0 .

$$
\mathcal{L}_{0}(f)=\inf \left\{\nu \in \mathbb{R}_{+}: \exists_{C>0} \quad|f(z)| \geq C|z|^{\nu},|z| \rightarrow 0\right\}
$$

- local Łojasiewicz exponent of f at 0 .
- (S. Spodzieja, 2000)

If $m>n$, then:

1) $\quad \mathcal{L}_{0}(f) \leq \mathcal{L}_{0}(L \circ f)$ for any $L \in \mathbb{L}(m, n)$,
2) $\mathcal{L}_{0}(f)=\mathcal{L}_{0}(L \circ f)$ for the generic $L \in \mathbb{L}(m, n)$,
3) $\mathcal{L}_{0}(f)=\mathcal{L}_{0}(L \circ f) \Leftrightarrow V(L) \cap C_{0}(f(U))=\{0\}$,
$U \subset \mathbb{C}^{n}$ - sufficiently small neighbourhood of 0 ,
$C_{0}(f(U))$ - tangent cone to the set $f(U)$.

Theorem

Let $m \geq n$ be positive integers, let $\ell=d^{n}(m-n)+n$ and let $L_{j} \in \mathbb{L}(m, 1), 1 \leq j \leq \ell$, be a system of independent linear functions. Then for any polynomial mapping $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ finite at 0 with $\operatorname{deg} f \leq d$ we have

$$
\mathcal{L}_{0}(f)=\min _{1 \leq i_{1}<\cdots<i_{n} \leq \ell} \mathcal{L}_{0}\left(\left(L_{i_{1}}, \ldots, L_{i_{n}}\right) \circ f\right)
$$

Effective Bertini theorem

Thank you for your attention!

