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Newton non-degenerate (Nnd) hypersurface germs, V/(f) C (C", 0), are (often) simple to deal with. Their
topological type is determined by the Newton diagram. (Hence various topological invariants can be
computed combinatorially.) But being Nnd is a highly restrictive condition, even for plane curve germs.

In arXiv:0807.5135 | have introduced a generalization of Nnd-hypersurface singularities. An isolated
hypersurface germ is called "directionally Newton-non-degenerate" (dNnd) if the non-degeneracy holds
"in each particular direction". Equivalently, such a singularity is resolvable by a "poly-toric blowup".

For such singularities various invariants (e.g. the Milnor number, the zeta function) are determined by the
collection of Newton diagrams.

The class of dNnd singularities is still restricted, even for plane curve germs. The broadest generalization
of Newton-non-degeneracy is obtained by considering all the Newton diagrams (in all the possible

coordinate systems).
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[Kouchnirenko.1976] Let (X, 0) C (C",0) be Nnd. Then the Milnor number is:
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7/9



Topological invariants for dNnd hypersurface germs
[Kouchnirenko.1976] Let (X, 0) C (C",0) be Nnd. Then the Milnor number is:
w(f) = p(Te) :=nl-vol,(T¢) — (n— 1) vol,—1(Te) + -+ + (=1)".

Proposition [K.2008] Let (X,0) C (C",0) be dNnd, of multiplicity
p, with the diagrams {F (X o)},

Kn=l;

X1...Xp—1

I 4 7/0



Topological invariants for dNnd hypersurface germs

[Kouchnirenko.1976] Let (X, 0) C (C",0) be Nnd. Then the Milnor number is:
w(f) = p(Te) :=nl-vol,(T¢) — (n— 1) vol,—1(Te) + -+ + (=1)".

Rn=I;
Proposition [K.2008] Let (X, 0) C (C", 0) be dNnd, of multiplicity
p, with the diagrams {I )g o)}, Then

n(X,0) =1 lu(r&o))—( 1) (] XP).

X1...Xp—1

I 4 7/0



Topological invariants for dNnd hypersurface germs

[Kouchnirenko.1976] Let (X, 0) C (C",0) be Nnd. Then the Milnor number is:
w(f) = p(Te) :=nl-vol,(T¢) — (n— 1) vol,—1(Te) + -+ + (=1)".

Rn=I;
Proposition [K.2008] Let (X, 0) C (C", 0) be dNnd, of multiplicity
p, with the diagrams {I )g o)}, Then

n(X,0) =1 lu(r&o))—( 1) (] XP).

X1...Xp—1

I 4 7/0



Topological invariants for dNnd hypersurface germs
[Kouchnirenko.1976] Let (X, 0) C (C",0) be Nnd. Then the Milnor number is:
w(f) = p(Te) :=nl-vol,(T¢) — (n— 1) vol,—1(Te) + -+ + (=1)".
Proposition [K.2008] Let (X, 0) C (C", 0) be dNnd, of multiplicity
p, with the diagrams {I )g o)}, Then

(x,o)fz,-zlu(rﬁx),o)) (r=1) - u(S7y xP).

[Varchenko.1976] Let V() C (C", 0) be Nnd. Then the zeta func-
tion of monodromy is £(V/(f)) = £(I') :=(an explicit expression). X1 Xn—1

I 4 7/0



Topological invariants for dNnd hypersurface germs
[Kouchnirenko.1976] Let (X, 0) C (C",0) be Nnd. Then the Milnor number is:
w(f) = p(Te) :=nl-vol,(T¢) — (n— 1) vol,—1(Te) + -+ + (=1)".
Proposition [K.2008] Let (X, 0) C (C", 0) be dNnd, of multiplicity
p, with the diagrams {I )g o)}, Then

(x,o)fz,-zlu(rﬁx),o)) (r=1) - u(S7y xP).

[Varchenko.1976] Let V() C (C", 0) be Nnd. Then the zeta func-

tion of monodromy is £(V/(f)) = £(I') :=(an explicit expression). X1 Xn—1
Proposition [K.2008] Let (X, 0) C (C", ) be dNnd, of multiplicity p, with the
I, 6% )

diagrams {FXO)} Then (X, 0) = W

I 4 7/0



Topological invariants for dNnd hypersurface germs

[Kouchnirenko.1976] Let (X, 0) C (C",0) be Nnd. Then the Milnor number is:
w(f) = p(Te) :=nl-vol,(T¢) — (n— 1) vol,—1(Te) + -+ + (=1)".

Proposition [K.2008] Let (X, 0) C (C", 0) be dNnd, of multiplicity
p, with the diagrams {I )g o)}, Then

(x,o)fz,-zlu(rﬁx),o)) (r=1) - u(S7y xP).

[Varchenko.1976] Let V() C (C", 0) be Nnd. Then the zeta func-

tion of monodromy is £(V/(f)) = £(I') :=(an explicit expression). X1 Xn—1
Proposition [K.2008] Let (X, 0) C (C", ) be dNnd, of multiplicity p, with the
I, 6% )

diagrams {FXO)} Then (X, 0) = W.

Problem: Being dNnd is still a restictive condition. Any further generalization?

IS 4 770



Topological invariants for dNnd hypersurface germs

[Kouchnirenko.1976] Let (X, 0) C (C",0) be Nnd. Then the Milnor number is:
w(f) = p(Te) :=nl-vol,(T¢) — (n— 1) vol,—1(Te) + -+ + (=1)".

Proposition [K.2008] Let (X, 0) C (C", 0) be dNnd, of multiplicity
p, with the diagrams {I )3 o)}, Then

(x,o)fz,-zlu(rﬁx),o)) (r=1) - u(S7y xP).

[Varchenko.1976] Let V() C (C", 0) be Nnd. Then the zeta func-

tion of monodromy is £(V/(f)) = £(I') :=(an explicit expression). X1 Xn—1
Proposition [K.2008] Let (X, 0) C (C", ) be dNnd, of multiplicity p, with the
I, 6% )

diagrams {FXO)} Then (X, 0) = W.

Problem: Being dNnd is still a restictive condition. Any further generalization?
For dNnd-germs we took coordinate systems corresponding to the singular points
of PT(x,0). But we can take many more coordinate systems and Newton diagrams.

IS 4 770



Topological invariants for dNnd hypersurface germs

[Kouchnirenko.1976] Let (X, 0) C (C",0) be Nnd. Then the Milnor number is:
w(f) = p(Te) :=nl-vol,(T¢) — (n— 1) vol,—1(Te) + -+ + (=1)".

Proposition [K.2008] Let (X, 0) C (C", 0) be dNnd, of multiplicity
p, with the diagrams {I )3 o)}, Then

(X, 0) =1, u(r&o)) (r=1) - u(S7y xP).
[Varchenko.1976] Let V() C (C", 0) be Nnd. Then the zeta func-
tion of monodromy is £(V/(f)) = £(I') :=(an explicit expression). X1 Xn—1
Proposition [K.2008] Let (X, 0) C (C", 0) be dNnd, of multiplicity p, with the

diagrams {FXO)} Then (X, 0) = %

Problem: Being dNnd is still a restictive condition. Any further generalization?
For dNnd-germs we took coordinate systems corresponding to the singular points
of PT(x,0). But we can take many more coordinate systems and Newton diagrams.
Question: What is determined by all the possible Newton diagrams of f

(in all the coordinate systems)?

IS 4 770



Topological invariants for dNnd hypersurface germs

[Kouchnirenko.1976] Let (X, 0) C (C",0) be Nnd. Then the Milnor number is:
w(f) = p(Te) :=nl-vol,(T¢) — (n— 1) vol,—1(Te) + -+ + (=1)".

Proposition [K.2008] Let (X, 0) C (C", 0) be dNnd, of multiplicity
p, with the diagrams {I )3 o)}, Then

(X, 0) =1, u(r&o)) (r=1) - u(S7y xP).
[Varchenko.1976] Let V() C (C", 0) be Nnd. Then the zeta func-
tion of monodromy is £(V/(f)) = £(I') :=(an explicit expression). X1 Xn—1
Proposition [K.2008] Let (X, 0) C (C", 0) be dNnd, of multiplicity p, with the

diagrams {FXO)} Then (X, 0) = %

Problem: Being dNnd is still a restictive condition. Any further generalization?
For dNnd-germs we took coordinate systems corresponding to the singular points
of PT(x,0). But we can take many more coordinate systems and Newton diagrams.
Question: What is determined by all the possible Newton diagrams of f

(in all the coordinate systems)?

IS 4 770



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)
Question: Given (X, 0),(X,0) C (C",0), suppose Fix,0) = l(x,0) in any
coordinate system. How (X, 0) is related to (X, 0)? (The same top.type?)

I 4 8/9



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)
Question: Given (X, 0),(X,0) C (C",0), suppose Fix,0) = l(x,0) in any
coordinate system. How (X, 0) is related to (X, 0)? (The same top.type?)

Example, n=2. Suppose (¢ o) = F(C o) in any coordinate system.

8/9



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)
Question: Given (X, 0),(X,0) C (C",0), suppose Fix,0) = l(x,0) in any
coordinate system. How (X, 0) is related to (X, 0)? (The same top.type?)

Example, n=2. Suppose (¢ o) = F(C o) in any coordinate system.

@ Extract the union of smooth branches, (C™°°t" o) C (C,0). Then
(Csmooth O) — (C"smooth O).

8/9



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)
Question: Given (X, 0),(X,0) C (C", 0), suppose Fx,0) = T(%.0) In any
coordinate system. How (X, o) is related to (X, 0)? (The same top.type?)

Example, n=2. Suppose (¢ o) = F(é o) in any coordinate system.

@ Extract the union of smooth branches, (Cs™°°th o) C (C,0). Then
(Csmooth O) — (C"smooth O).

© This does not hold for singular branches. E.g. take (C,0) = V(y* — x°) and
(C,0) = V((y* = x*)? — yx®). Then [(co) = Féo)

8/9



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)
Question: Given (X, 0),(X,0) C (C", 0), suppose Fx,0) = T(%.0) In any
coordinate system. How (X, o) is related to (X, 0)? (The same top.type?)

Example, n=2. Suppose (¢ o) = I'(ao) in any coordinate system.
@ Extract the union of smooth branches, (Cs™°°th o) C (C,0). Then
(Csmooth O) — (C"smooth O).
© This does not hold for singular branches. E.g. take (C,0) = V(y* — x°) and
(C,0) = V((y* = x*)? — yx®). Then [(co) = Féo)

The results for singular branches are weaker and more technical.

8/9



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)
Question: Given (X, 0),(X,0) C (C", 0), suppose Fx,0) = T(%.0) In any
coordinate system. How (X, o) is related to (X, 0)? (The same top.type?)

Example, n=2. Suppose (¢ o) = I'(C o) in any coordinate system.

@ Extract the union of smooth branches, (Cs™°°th o) C (C,0). Then
(Csmooth’ O) — (C”'smooth7 O).

© This does not hold for singular branches. E.g. take (C,0) = V(y* — x%) and
(C.0) = V((y*—x%)2 — yx5). Then ['(c o) = F(¢.0):

The results for singular branches are weaker and more technical.

Proposition, n > 3. Let (X, 0) C (C", o) irreducible. Suppose I'(x o) = F(%.0) i

any coordinate system. Suppose a section (C?,0) N (X, 0) contains a (reduced)
smooth branch. Then (X, 0) = (X, o).

8/9



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)
Question: Given (X, 0),(X,0) C (C", 0), suppose Fx,0) = T(%.0) In any
coordinate system. How (X, o) is related to (X, 0)? (The same top.type?)

Example, n=2. Suppose (¢ o) = r(é,o) in any coordinate system.
@ Extract the union of smooth branches, (Cs™°°th o) C (C,0). Then
(Csmooth O) — (C"'smooth O).
© This does not hold for singular branches. E.g. take (C,0) = V(y* — x°) and
(C,0) = V((y* = x*)? — yx®). Then [(co) = Féo)

The results for singular branches are weaker and more technical.

Proposition, n > 3. Let (X, 0) C (C", o) irreducible. Suppose I'(x o) = F(%.0) i
any coordinate system. Suppose a section (C?,0) N (X, 0) contains a (reduced)
smooth branch. Then (X, 0) = (X, o).

Without such a smooth branch the results are weaker and more technical.

I 4 8/o



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)
Question: Given (X, 0),(X,0) C (C", 0), suppose Fx,0) = T(%.0) In any
coordinate system. How (X, o) is related to (X, 0)? (The same top.type?)

Example, n=2. Suppose (¢ o) = r(é,o) in any coordinate system.
@ Extract the union of smooth branches, (Cs™°°th o) C (C,0). Then
(Csmooth O) — (C"'smooth O).
© This does not hold for singular branches. E.g. take (C,0) = V(y* — x°) and
(C,0) = V((y* = x*)? — yx®). Then [(co) = Féo)

The results for singular branches are weaker and more technical.

Proposition, n > 3. Let (X, 0) C (C", o) irreducible. Suppose I'(x o) = F(%.0) i
any coordinate system. Suppose a section (C?,0) N (X, 0) contains a (reduced)
smooth branch. Then (X, 0) = (X, o).

Without such a smooth branch the results are weaker and more technical. What about the top.type of V/(f)?

I 4 8/o



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)
Question: Given (X, 0),(X,0) C (C", 0), suppose Fx,0) = T(%.0) In any
coordinate system. How (X, o) is related to (X, 0)? (The same top.type?)

Example, n=2. Suppose (¢ o) = I'(5 o) in any coordinate system.

@ Extract the union of smooth branches, (Cs™°°th o) C (C,0). Then
(Csmooth7 O) — (C”'smooth7 O).

© This does not hold for singular branches. E.g. take (C,0) = V(y* — x%) and
(C.0) = V((y*—x%)2 — yx5). Then ['(c o) = F(¢.0):

The results for singular branches are weaker and more technical.

Proposition, n > 3. Let (X, 0) C (C", o) irreducible. Suppose I'(x o) = F(%.0) i
any coordinate system. Suppose a section (C?,0) N (X, 0) contains a (reduced)
smooth branch. Then (X, 0) = (X, o).

Without such a smooth branch the results are weaker and more technical. What about the top.type of V/(f)?

Def. 1. The Newton-diagram stratum ¥} := {f| ['r = Iz in any coordinates}.

IS 4 s/



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)
Question: Given (X, 0),(X,0) C (C", 0), suppose Fx,0) = T(%.0) In any
coordinate system. How (X, o) is related to (X, 0)? (The same top.type?)

Example, n=2. Suppose (¢ o) = r(é,o) in any coordinate system.
@ Extract the union of smooth branches, (Cs™°°th o) C (C,0). Then
(Csmooth O) — (C"'smooth O).
© This does not hold for singular branches. E.g. take (C,0) = V(y* — x°) and
(C,0) = V((y* = x*)? — yx®). Then [(co) = Féo)

The results for singular branches are weaker and more technical.

Proposition, n > 3. Let (X, 0) C (C", o) irreducible. Suppose I'(x o) = F(%.0) i
any coordinate system. Suppose a section (C?,0) N (X, 0) contains a (reduced)
smooth branch. Then (X, 0) = (X, 0).

Without such a smooth branch the results are weaker and more technical. What about the top.type of V/(f)?

Def. 1. The Newton-diagram stratum ¥} := {f| ['r = Iz in any coordinates}.
2. An isolated sing. V/(f) is called weakly-Newton-non-degenerate if any small
deformation of (X, o) inside X% is yu = const.

IS 4 s/



Checking all the possible diagrams (weakly Newton non-degenerate hypersurface germs)
Question: Given (X, 0),(X,0) C (C", 0), suppose Fx,0) = T(%.0) In any
coordinate system. How (X, o) is related to (X, 0)? (The same top.type?)

Example, n=2. Suppose (¢ o) = I'(é o) in any coordinate system.

@ Extract the union of smooth branches, (Cs™°°th o) C (C,0). Then
(Csmooth7 O) — (C"'smooth7 O).

© This does not hold for singular branches. E.g. take (C,0) = V(y* — x%) and
(C.0) = V((y*—x%)2 — yx5). Then ['(c o) = F(¢.0):

The results for singular branches are weaker and more technical.

Proposition, n > 3. Let (X, 0) C (C", o) irreducible. Suppose I'(x o) = F(%.0) i
any coordinate system. Suppose a section (C?,0) N (X, 0) contains a (reduced)
smooth branch. Then (X, 0) = (X, 0).

Without such a smooth branch the results are weaker and more technical. What about the top.type of V/(f)?

Def. 1. The Newton-diagram stratum ¥} := {f| ['r = Iz in any coordinates}.
2. An isolated sing. V/(f) is called weakly-Newton-non-degenerate if any small
deformation of (X, o) inside X% is yu = const.
The properties of wNnd germs are studied in arXiv:0807.5135.
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