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Abstract

Consider map-germs (kn, o) → (kp, o) up to the groups of right/left-right/
contact equivalence. The group orbits are complicated and are traditionally
studied via their tangent space. This transition is classically done by vector
fields integration, thus binding the theory to the real/complex case.

I will present the new approach to this subject. One studies the maps of germs
of Noetherian schemes, in any characteristic. The corresponding groups of
equivalence admit ‘good’ tangent spaces. The submodules of the tangent
spaces lead to submodules of the group orbits. This extends (and sometimes
strengthens) classical results on ’determinacy vs infinitesimal determinacy’.

Based on arXiv:1212.6894 (jointly with G. Belitski), arXiv:1808.06185 (jointly with A.-F. Boix,
G.-M. Greuel) and arXiv:2111.02715.
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Prologue: f ∈ Maps
(
(kn,o),(kp,o)

)
for k∈R,C.

1. Suppose rank[f ′|o] = min(n,p). (i.e. f is an immersion or a submersion)
Then f(x)=(x1, . . . , xmin(n,p), 0, .., 0) in some coordinates on (kn,o) and (kp,o).
(At a non-critical point “there is no local geometry/topology/algebra".)

2. Let (k1, o)
f→ (k1, o), with f ′|o = 0. Then (in some coordinates) f(x) = xd.

For a general critical point (kn, o)
f→(kp, o) no nice canonical form is possible.

Goal: (a weaker statement) “The higher order terms are not important."
(i.e. can be eliminated by coordinate changes)

3. (Morse lemma) Take (kn, o)
f→ (k1, o), with f ′|o = (0, . . . , 0). Assume

f ′′|o ∈ Matn×n(k) is non-degenerate. Then (in some local coordiates)
f (x)=homogeneous polynomial of degree 2. And then diagonalize, f 

∑
(±)x2

i .
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Prologue: f ∈ Maps
(
(kn,o),(kp,o)

)
for k∈R,C.

Consider maps up to coordinate changes in (kn, o) and (kp, o):

(The right equivalence)R�Maps
(
(kn,o),(kp,o)

)
by f f ◦Φ−1

X ,here ΦX�(kn,o).

(The left equivalence)L �Maps
(
(kn,o),(kp,o)

)
by f  ΦY ◦ f ,here ΦY�(kp,o).

(The A -equivalence) A := L ×R �Maps
(
(kn,o),(kp,o)

)
by f  ΦY ◦f ◦Φ−1

X .

(The K -equivalence) K �Maps
(
(kn,o),(kp,o)

)
by f  GL(p,O(kn,o))·f ◦Φ−1

X .

Q. How large are the group orbits, Rf , A f , K f ?
Can we eliminate higher order terms of f ? Maybe bring f to a “nice" form?

These questions have been extensively studied. Numerous good criteria exist. But
the whole theory was chained to the R,C case.(Because of vector field integration.)

My goal: purely algebraic version (in any characteristic). There are some results.
Surprisingly, they are often stronger than the classical ones, even for k ∈ R,C.
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f ∈ Maps
(
(kn,o),(kp,o)

)
k-any field, e.g. Q,R,C,Qp, a finite field, etc.

(kn, o) is the (formal/analytic/. . . ) germ. Namely, O(kn,o) = k[[x ]],k{x}
(k-normed, complete) or k〈x〉 (algebraic power series).

Fix coordinates (y1 . . . , yp) on (kp, o). Then Maps
(
(kn,o),(kp,o)

)
3 f = (f1 . . . , fp).

Thus Maps
(
(kn,o),(kp,o)

)∼= m · O⊕p(kn,o).

R := Aut(kn, o) = Autk(O(kn,o)) � Maps
(
(kn,o),(kp,o)

)
by f f ◦Φ−1

X .

L := Aut(kp, o) = Autk(O(kp,o)) � Maps
(
(kn,o),(kp,o)

)
by f  ΦY ◦ f .

A=L×R�Maps
(
(kn,o),(kp,o)

)
by f ΦY ◦f ◦Φ−1

X . And K =GL(p,O(kp,o))oR.

Q. Let G ∈ R,A ,K . How large is the group orbit G f ?
Find the largest ideal J ⊂ O(kn,o) satisfying: G f ⊇ {f }+ J · O⊕p(kn,o).

(Thus if f − f̃ ∈ J · O⊕p(kn,o) then f
G∼ f̃ . E.g. for J ⊇ md get finite determinacy.)
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The R-orbits (characteristic free, p = 1) f ∈ m ⊂ O(kn,o), f
R
 f ◦ Φ−1

X .

The standard approach: study the orbit Rf via its “tangent space" TRf . Note:
the group R is not Lie/(pro-)algebraic/pro-finite. Thus we define TR, and then
establish the relation TRf � Rf .

The tangent space to the group: TR =(germs of vector fields at o)=
{
∑

ai (x) ∂
∂xi
} = Derk(O(kn,o)) = (k-linear derivations of the ring).

The “tangent space to the orbit": (TRf =
char(k)=0

)TRf = Jac(f ) ⊆ O(kn,o).

Proposition. Let f ∈ m3. Suppose an ideal J⊂O(kn,o) satisfies: J2 ⊆ J · Jac(f ).
Then Rf ⊇ {f }+ J2.
Example. Rf ⊇ {f }+ Jac(f )2. (Here f can have a non-isolated critical point.)

Theorem (Mather, k = R,C). If md ⊆ m2 · Jac(f ) then Rf ⊇ {f }+ md .

Let us compare these bounds. Assume r ≥ 4 and char(k) - r .
f (x1, x2) = x r1 + x r2
m2r−3 ⊂ m2 · Jac(f )
Old: f + m2r−3 ⊆ Rf
New: f + (x r−1, y r−1)2 ⊆ Rf

f (x1, . . . , xn) =
∑n

i=1 x
r
i

mn(r−1)−1 ⊂ m2 · Jac(f )
Old: f + mn(r−1)−1 ⊆ Rf
New: f + ({x r−1

i })2 ⊆ Rf

The proposition is
known for k = R,C.
[Ebeling]
(via vector fields
integration)
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Proposition. Let f ∈ m3. Suppose an ideal J⊂ O(kn,o) satisfies: J2 ⊆ J · Jac(f ).
Then Rf ⊇ {f }+ J2.

Remarks.
1. Given f we can eliminate various “higher order terms". (This is useful!)

2. The orbit Rf ⊂ Maps ((kn, o), (kp, o)) is highly non-linear. But it contains a
huge linear subspace.

3. This statement holds for more general germs/rings. e.g. for O(kn,o)/I (or local
henselian Noetherian rings), with a technical assumption when char(k)>0.
Geometricaly: we have functions on singular (germs of) spaces, and their
R-orbits.

4. Similar statements hold for K and A -equivalences. The A -case is
essentially more complicated.
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The action A = L ×R � Maps
(
(kn,o),(kp,o)

)
by f  ΦY ◦ f ◦ Φ−1

X .

ΦX � (kn, o), i.e. ΦX ∈ Autk(O(kn,o)) (local coordinate changes).
ΦY � (kp, o), i.e. ΦY ∈ Autk(O(kp,o)).

The action R � Maps
(
(kn,o),(kp,o)

)
is k-linear. (f + f̃ ) ◦Φ−1

X = f ◦Φ−1
X + f̃ ◦Φ−1

X .
The action L � Maps

(
(kn,o),(kp,o)

)
is not k-linear (neither additive, nor

multiplicative).

The tangent space TA :=TL ⊕TR =Derk(O(kp,o))⊕ Derk(O(kn,o)).
The “tangent space to the orbit": (TA f =

char(k)=0
)TA f = TL f +TRf .

Example. Let (kn, o)
f→(k1, o). Then TRf =Jac(f), TK f =Jac(f)+(f)⊂O(kn,o).

But TA f =Jac(f )+Spank(1,f ,f 2, . . . )⊂O(kn,o). Not an ideal, only a vector space!
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The action A � Maps
(
(kn,o),(kp,o)

)∼= m · O⊕p(kn,o) and the orbits A f vs TA f

Goal: The largest ideal J ⊂ O(kn,o) satisfying: A f ⊇ {f }+ J · O⊕p(kn,o).

Let f ∈ m · O⊕p(kn,o) and assume: the field k is infinite.
Theorem (K.2021) Suppose an ideal J ⊂ O(kn,o) satisfies:
J2·O⊕p(kn,o)⊆m· J ·TRf +f −1(y2)·TL f. Then A f ⊇{f }+J2·O⊕p(kn,o)+f −1(y2)·TL f.

Example. (p = 1, J = md) If m2d ⊆ md+1 · Jac(f )+ Spank(f 2, f 3, . . . ),
then A f ⊇ {f }+m2d + Spank(f 2, f 3, . . . ).

Remarks. • This is a linearization result. It translates the study of the orbit A f
to the tangent space TA f . It remains to verify that TA f is “large enough" .
• For R-case we had the condition J2 ⊆ J · Jac(f ). This is easy to ensure, e.g.
one can take J = Jac(f ). For A -case the condition is
J2 · R⊕pX ⊆ m · J · TRf + f −1(y2) · TL f . More delicate.
To get effective bounds one needs “The structure of TA f ". (A separate talk.)
• There are stronger/more general (but more technical) versions.
• The proof does not use unfoldings/vector field integration. It uses the implicit
function theorem (Tougeron’s style), the Weierstraß division and some
commutative algebra.
•Guess: the assumption “k is infinite" is not necessary. (But I need it in the proof.)
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Another approach to determinacy, via filtrations
Take a map f ∈ Maps

(
(kn,o),(kp,o)

)∼= m · O⊕p(kn,o), we get the orbit G f ⊂ O⊕p(kn,o).
If G f ⊇ {f }+(linear space) then TG f ⊇(linear space).
Thus we want “the largest part of TG f " that lies inside G f .

Theorem (K.2021). Fix some integers 1≤ j<d and an ideal I ⊂ O(kn,o).

(R-equivalence, p = 1) Suppose char(k) = 0 or char(k) > d d−ord(f )j e. Then:
R(j)f ⊇ {f }+ I d if and only if TR(j) f ⊇ I d .

(A -equivalence) Suppose char(k) = 0 or char(k) > d 2d−1−ord(f )
j e. Then:

A (j)f ⊇ {f }+ I d · O⊕p(kn,o) if and only if TA (j) f ⊇
I d · O⊕p(kn,o).

Now we define the subgroups G (j) ≤ G and the subspaces TG (j) ⊆ TG .
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Filtrations I j⊂R, G (j)≤G and TG (j)⊆TG . Fix an ideal I ⊆m. Take the filtration
on the space of maps, Maps

(
(kn,o),(kp,o)

)∼=m·O⊕p(kn,o)⊇ I ·O⊕p(kn,o)⊃ I 2 ·O⊕p(kn,o)⊃· · ·.

For an(y) action G �m·O⊕p(kn,o) take those elements that preserve the filtration:

G ≥G (0) :={g ∈G | g(I d ·O⊕p(kn,o))= I d ·O⊕p(kn,o), ∀ d}. For j ≥ 1 define
G (0)BG (j):={g ∈G (0)| g |I d/I d+j

= Id | I d/I d+j
, ∀ d},

i.e.,g acts as identitymodulo “higher" order terms. Hence the group-filtration:
G ≥G (0)BG (1)BG (2)B· · ·

Similarly, given a tangent space TG �O⊕p(kn,o), take those derivations that

preserve the filtration: TG ⊃TG (0) ={ξ∈TG | ξ(I d ·O⊕p(kn,o))⊆ I d ·O⊕p(kn,o)}. For
j≥1 take the “filt.nilpotent" derivations
TG ⊃TG (j) ={ξ ∈ TG | ξ(I d · O⊕p(kn,o))⊆ I d+j ·O⊕p(kn,o)}. Hence the tangent space
filtration: TG ⊃ TG (0) ⊇ TG (1) ⊇ · · ·

Example. G =R, I =m. The filtration O(kn,o)⊃m⊃m2⊃· · · . Then:
R =R(0), as local coordinate changes preserve the origin.
And R(j) = {x → x + h(x)| h(x) ∈ (x)j+1}.
TR = Derk(O(kn,o)) ⊃ TR(0) = {ξ| ξ(m) ⊆ m} ⊃ TR(j) = {ξ| ξ(m) ⊆ mj+1}.
(vector fields that vanish at o up to order j + 1.)
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Determinacy criterion using filtrations
Theorem (K.2021). Fix some integers 1≤ j<d and an ideal I ⊂ O(kn,o).

(R, p = 1) Suppose char(k) = 0 or char(k) > d d−ord(f )j e. Then:
R(j)f ⊇ {f }+ I d if and only if TR(j) f ⊇ I d .

(A ) Suppose char(k) = 0 or char(k) > d 2d−1−ord(f )
j e. Then:

A (j)f ⊇ {f }+I d ·O⊕p(kn,o) if and only if TA (j) f ⊇ I d ·O⊕p(kn,o).

Example. (R, p=1, I =m and j = 1) R(1)f ⊇{f }+md iff m2 ·Jac(f )⊇md .
(Assuming char(k)=0 or char(k)>d−ord(f ).)

Remarks.
This theorem holds over local Noetherian rings, with technical assumptions.
This result is new, but “the ideology" is well known, [Gaffney], [du Plessis],
[Bruce - du Plessis - Wall], [Belitskii-K.], [Boix-Greuel-K.].
This theorem generalizes the classical criteria over R,C. The proof does not use
vector field integration/unfoldings/finite jets. Yet, this result is restricted by
char(k) assumption.
What happens in low characteristic? The situation ismore delicate. This was
studied in [Boix-Greuel-K.] forG ∈R,K , withweaker bounds. (For low
characteristic these weaker bounds are sharp!)
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An application: relative algebraization of maps
Let f ∈ Maps

(
(kn,o),(kp,o)

)∼= m · O⊕p(kn,o). Suppose f is finitely G -determined, i.e.,

G f ⊇ {f }+ md · O⊕p(kn,o), for d � 1. Then f
G∼(a polynomial map).

What happens if f is not finitely G -determined? (i.e. its critical/singular/
instability locus is of positive dimension)
Example (Whitney): f (x , y , z) = xy(x + y)(x − zy)(x − ezy) ∈ C{x , y , z}
is not K -equivalent to a polynomial. Here Sing(V (f )) = V (x , y) ⊂ C3.

Note: at least f is a polynomial “in the direction transverse to the ẑ-axis".
We get the natural generalization.

Proposition. Let f∈Maps
(
(kn,o),(kp,o)

)∼=m·O⊕p(kn,o),withk= k̄ (any characteristic).
Let G ∈R,K,A . Suppose the critical/singular/instability locus is of codimension c in
(kn,o). Then f isG -equivalent to an element of On−c [x1,. . .,xc ]⊕p.

HereOn−c=k[[xc+1, . . . , xn]] or k{xc+1, . . . , xn}, thus On−c [x1,. . .,xc ]=polynomials
in variables x1, . . . , xc , with coefficients - power series in the rest of the variables.

Thanks for your attention!
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