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1. Introduction

Let ω be a closed 2-form on a 2n-dimensional manifold M . ω is a symplectic
form on M if for any p ∈ M

ωn|p = ω ∧ · · · ∧ ω|p 6= 0. (1)

By the Darboux Theorem there exists a system of local coordinates
(p1, · · · , pn, q1, · · · , qn) around any point p ∈ M such that

ω =
n∑

i=1

dpi ∧ dqi.

If the set of points p ∈ M , where ω does not satisfy (1), is nowhere
dense we call ω a singular symplectic form.

In this paper we study local invariants of singular symplectic forms on
a 4-dimensional manifold.

Because our consideration is local, we may assume that ω is a germ of
a K-analytic or smooth closed 2-form on K4 for K = R or K = C . Then
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ω2 = fΩ, where f is a function-germ at 0 and Ω is a germ at 0 of a volume
form on K4.

The Martinet hypersurface Σ2 = Σ2(ω) is the following set
{
p ∈ K4 : ω2|p = 0

}
= {f = 0} .

We assume that f(0) = 0 and df0 6= 0. Then Σ2 is called structurally smooth
at 0. In dimension 4 such situation is generic (see [12]).

Let ω be a germ of a singular symplectic form with a structurally smooth
Martinet hypersurface at 0. It is obvious that Σ2 is an invariant of ω. It is
also obvious that the pullback of ω to Σ2 is an invariant of ω. In this paper
we consider the following problem.

Do the Martinet hypersurface Σ2 and the pullback of ω to Σ2 form a
complete set of invariants?

The starting point of this paper is the articles [8,9] where an affirmative
answer to the above question is given for all local singular contact struc-
tures excluding degenerations of infinite codimension. B. Jakubczyk and
M. Zhitomirskii show that local C-analytic singular contact structures on
C3 with structurally smooth Martinet hypersurfaces are diffeomorphic if
their Martinet hypersurfaces and restrictions of singular structures to them
are diffeomorphic. In the R-analytic category a complete set of invariants
contains, in general, one more independent invariant. It is a canonical ori-
entation on the Martinet hypersurface. The same is true for smooth local
singular contact structures P = (α) on R3 provided α|S is either not flat
at 0 or α|S = 0. The authors also study local singular contact structures in
higher dimensions. They find more subtle invariants of a singular contact
structure P = (α) on K2n+1 : a line bundle L over the Martinet hypersur-
face S, a canonical partial connection ∆0 on the line bundle L at 0 ∈ K2n+1

and a 2-dimensional kernel ker(α∧(dα)n−1)|0. They also consider the more
general case when S has singularities.

For the first occurring singularities of singular symplectic forms on a 4-
dimensional manifold the answer for the above question follows from Mar-
tinet’s normal forms of types Σ20 and Σ220 (see [11,12,15]). In fact it is
proved that the Martinet hypersurface Σ2 and a characteristic line field on
Σ2 (i.e. {X is a smooth vector field : Xc(ω|TΣ2) = 0}) form a complete
set of invariants. Since (ω|TΣ2)|0 6= 0 for Σ20-singularity, then its charac-
teristic line field is generated by a non-vanishing vector field. But for Σ220-
singularity both ω|TΣ2 and the characteristic line vanish at 0 (see [11,15]).

In this paper we assume that ω|TΣ2 vanishes at 0 (if ω|TΣ2 does not
vanish at 0 then ω is a symplectic singular form of type Σ20 and these
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problems for this singularity are solved in [12]). We show that a complete
set of invariants for local C-analytic singular symplectic forms on C4 with
structurally smooth Martinet hypersurfaces consists of the Martinet hy-
persurface, the pullback of the singular symplectic form to it and the 2-
dimensional kernel of the singular symplectic form at 0 (Theorem 3.1). The
same is true for local R-analytic and smooth singular symplectic forms on
R4 with structurally smooth Martinet hypersurfaces if we add to the in-
variants the canonical orientation of the Martinet hypersurface (Theorem
3.2). These results are obtained as corollaries of Theorem 2.1 on ’normal’
forms of singular symplectic forms with a given pullback to the Martinet
hypersurface. Another corollary of Theorem 2.1 is a realization theorem
(Theorem 2.2), where we show which closed 2-forms on K3 vanishing at 0
can be obtained as a pullback of a singular symplectic form to its Martinet
hypersuface.

In section 4 (see Theorems 4.1, 4.2) we also prove that an equivalence
class of a K-analytic singular symplectic form ω on K4 with a structurally
smooth Martinet hypersurface is determined only by the Martinet hyper-
surface, its canonical orientation (only if K = R) and the pullback of the
singular form to it if ω satisfies the following condition :

∀X (X is a K− analytic vector field and Xc(ω|TΣ2) = 0) =⇒ X|0 = 0.

The same statement holds for local smooth singular symplectic forms ω on
R4 with structurally smooth Martinet hypersurfaces if the two generators
of the ideal generated by coefficients of ω|TΣ2 form a regular sequence of
length 2 (Theorem 4.3).

The local invariants of singular symplectic forms in higher dimensions
and with singular Martinet hypersurfaces will be studied in [4].

2. The normal form and realization theorems

The main result of this section is Theorem 2.1. In this theorem a ’normal’
form of ω with the given pullback to the Martinet hypersurface is presented
and sufficient conditions for the equivalence of germs of singular symplectic
forms with the same pullback to the common Martinet hypersurface are
found. We also show which germs of closed 2-forms on K3 vanishing at 0
can be obtained as a pullback of a germ of a singular symplectic form on K4

to its structurally smooth Martinet hypersurface. All results of this section
hold in C-analytic, R-analytic and (C∞) smooth categories.

Let Ω be a germ of a volume form on K4. Let ω0 and ω1 be two germs of
singular symplectic forms on K4 with structurally smooth Martinet hyper-
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surfaces at 0. It is obvious that if there exists a diffeomorphism-germ of K4

at 0 such that Φ∗ω1 = ω0 then Φ(Σ2(ω0)) = Σ2(ω1). Therefore we assume
that these singular symplectic forms have the same Martinet hypersurface.

If the singular symplectic forms are equal on their common Martinet
hypersurface then we obtain the following result (see see [7]).

Proposition 2.1. Let ω0 and ω1 be two germs at 0 of singular symplectic
forms on K4 with the common structurally smooth Martinet hypersurface
Σ2.

If ω2
1

ω2
0
|0 > 0 for K = R (<e

(
ω2

1
ω2

0
|0

)
> 0 or =m

(
ω2

1
ω2

0
|0

)
6= 0 for K =

C) and ω0|TΣ2K4 = ω1|TΣ2K4 then there exists a diffeomorphism-germ Φ :
(K4, 0) → (K4, 0) such that

Φ∗ω1 = ω0

and Φ|Σ2 = IdΣ2 .

Proof. We present the proof in R-analytic and smooth categories. The
proof in the C-analytic category is similar. Firstly we simplify the forms ω0

and ω1. We find a local coordinate system (p1, p2, p3, p4) such that ω2
0 =

p1Ω, ω2
1 = p1(A + g)Ω, where Ω = dp1 ∧ dp2 ∧ dp3 ∧ dp4 , g is a function-

germ, g(0) = 0 and A > 0 (see [12]). In this coordinate system ωi =∑
1≤j<k≤4 fi,j,kdpj ∧ dpk, where fi,j,k is a function-germ on K4 for i =

0, 1 and 1 ≤ j < k ≤ 4. We can decompose fi,j,k in the following way
fi,j,k(p1, p2, p3, p4) = p1gi,j,k(p1, p2, p3, p4) + hi,j,k(p2, p3, p4), where gi,j,k

is a function-germ and hi,j,k is a function-germ that does not depend on
p1 for i = 0, 1 and 1 ≤ j < k ≤ 4. Let αi =

∑
1≤j<k≤4 gi,j,kdpj ∧ dpk and

ω̃i =
∑

1≤j<k≤4 hi,j,kdpj∧dpk. Then we have ωi = p1αi +ω̃i for i = 0, 1. By
assumptions we have ω̃0|TΣ2K4 = ω̃1|TΣ2K4 . It implies that ω̃0 = ω̃1, because
hi,j,k does not depend on p1. We denote ω̃1 = ω̃0 by ω̃. Then ωi = p1αi + ω̃

for i = 0, 1.
Further on we use the Moser homotopy method (see [14]). Let ωt =

tω1 + (1− t)ω0, for t ∈ [0; 1].
We want to find a family of diffeomorphisms Φt, t ∈ [0; 1] such that

Φ∗t ωt = ω0, for t ∈ [0; 1], Φ0 = Id. Differentiating the above homotopy
equation by t, we obtain

d(Vtcωt) = ω0 − ω1 = p1(α0 − α1),

where Vt = d
dtΦt. We need to solve the above equation for Vt. Now we prove

the following lemmas.
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Lemma 2.1 ( [2] ). Let γ be a germ of a 2-form on R4 and θ be a germ
of a 1-form on R4. If p1γ +dp1∧ θ is a germ of a closed 2-form on R4 then
there exists a germ of a 1-form δ such that p1γ + dp1 ∧ θ = d(p1δ).

Proof. p1γ + dp1 ∧ θ is closed, therefore there exists a 1-form ξ such that
dξ = p1γ+dp1∧θ. There exist a germ of a 1-form ξ1 on R4, a function-germ g

on R4 and a germ of 1-form ξ2 on {p1 = 0} such that ξ = p1ξ1+gdp1+π∗ξ2,
where π : R4 3 (p1, p2, p3, p4) 7→ (p2, p3, p4) ∈ {p1 = 0}. The pullback of
dξ to {p1 = 0} vanishes. It implies that dξ2 = 0. Thus d(p1ξ1 + gdp1) =
d(ξ − π∗ξ2) = p1γ + dp1 ∧ θ. It implies that d(p1(ξ1 − dg)) = p1γ + dp1 ∧ θ,
which finishes the proof of Lemma 2.1.

Lemma 2.2. Let α be a germ of a 2-form on R4. If p1α is a germ of
a closed 2-form on R4 then there exists a germ of a 1-form β such that
p1α = d(p2

1β).

Proof. By Lemma 2.1 there exists a germ of a 1-form γ such that p1α =
d(p1γ) = dp1 ∧ γ + p1dγ. It implies that dp1 ∧ γ|T{p1=0}R4 = 0. Hence
there exist a germ of a 1-form δ and a smooth function-germ f such that
γ = p1δ + fdp1. If we take β = δ − df

2 then

p1α = d(p1γ − d(
p2
1f

2
)) = d(p2

1β),

which finishes the proof of Lemma 2.2.

Let us notice that p1(α0−α1) = ω1−ω0 is closed. By the above lemma
it is enough to solve for Vt the equation

Vtcωt = p2
1β. (2)

Now we calculate Σ2(ωt). It is easy to see that

ω2
i = (p1αi + ω̃)2 = ω̃2 + p1(2αi ∧ ω̃ + p1α

2
i ).

But ω2
i |T{p1=0}R4 = 0. This clearly forces ω̃2|T{p1=0}R4 = 0. It implies that

ω̃2 = 0, because coefficients of ω̃ do not depend on p1. By the above formula
we get

2α0 ∧ ω̃ = Ω− p1α
2
0

and

2α1 ∧ ω̃ = (A + g)Ω− p1α
2
1
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The above formulas imply the following formula

ω2
t = (p1(tα1 + (1− t)α0) + ω̃)2 =

= p1(1 + t(A + g − 1))Ω + (3)

+p2
1

(
(tα1 + (1− t)α0)2 − tα2

1 − (1− t)α2
0

)
.

From (3) we obtain

ω2
t = p1(1 + t(A + g − 1) + p1ht)Ω, (4)

where ht is a function-germ. Let us notice that (1+ t(A+ g(0)−1)) 6= 0 for
A > 0 and for t ∈ [0, 1]. Since Vtcω2

t = 2(Vtcωt)∧ωt and Σ2(ωt) = {p1 = 0}
is nowhere dense, equation (2) is equivalent to the following equation

Vtcω2
t = 2p2

1β ∧ ωt. (5)

Combining (5) with (4) we obtain

Vtc(1 + t(A + g − 1) + p1ht)Ω = 2p1β ∧ ωt (6)

But if A > 0 then (1 + t(A− 1)) 6= 0 for t ∈ [0; 1]. Therefore we can find a
germ of smooth (or R-analytic) vector field Vt that satisfies (6). Vt|Σ2 = 0,
because the right hand side of (6) vanishes on Σ2. Hence there exists a
diffeomorphism Φt such that Φ∗t ωt = ω0 for t ∈ [0, 1] and Φt|Σ2 = IdΣ2 .
This completes the proof of Theorem 2.1.

Now we define

ι : Σ2 = {p1 = 0} 3 (p2, p3, p4) 7→ (0, p2, p3, p4) ∈ K4

and

π : K4 3 (p1, p2, p3, p4) 7→ (p2, p3, p4) ∈ Σ2 = {p1 = 0} .

If rankι∗ω|0 is 2 then ω is equivalent to Σ20 Martinet’s singular form (see
[12]). Therefore we study singular symplectic forms such that rankι∗ω|0 =
0.

In the next theorem we describe all germs of singular symplectic
forms ω on K4 with structurally smooth Martinet hypersurfaces at 0 and
rankι∗ω|0 = 0. We also find the sufficient conditions for equivalence of
singular symplectic forms of this type.

Theorem 2.1. Let ω be a germ of a singular symplectic form on K4 with
a structurally smooth Martinet hypersurface at 0.

(a) If rankι∗ω|0 = 0 then there exists a germ of a diffeomorphism Φ :
(K4, 0) → (K4, 0) such that

Φ∗ω = d (p1π
∗α) + π∗σ,
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where σ = ι∗Φ∗ω is a germ of a closed 2-form on {p1 = 0} and α is a
germ of a contact form on {p1 = 0} such that α ∧ σ = 0.

(b)Moreover if ω0 = d (p1π
∗α0) + π∗σ and ω1 = d (p1π

∗α1) + π∗σ are
two germs of singular symplectic forms satisfying the above conditions and

(1) α1∧dα1
α0∧dα0

|0 > 0 if K = R,
(2) α1|0 ∧ α0|0 = 0,

then there exists a germ of a diffeomorphism Ψ : (K4, 0) → (K4, 0) such
that

Ψ∗ω1 = ω0.

Remark 2.1. Assumption (1) is only needed in R-analytic and smooth
categories. In the C-analytic category we have

Φ∗(d (p1π
∗α) + π∗σ) = d (p1π

∗iα) + π∗σ,

where Φ is the following diffeomorphism Φ(p1, p2, p3, p4) = (ip1, p2, p3, p4)
and i2 = −1. It is obvious that Φ|Σ2 = IdΣ2 , where Σ2 = {p1 = 0} and
iα ∧ d(iα) = −α ∧ dα.

Proof. By Lemma 2.1 there exists a 1-form γ such that ω = d(p1γ)+π∗σ.
It is clear that we can write γ in the following form γ = π∗α + p1δ + gdp1,
where α is a germ of a 1-form on {p1 = 0}, g is a function-germ and δ is a
germ of a 1-form. Then

d(p1(p1δ + gdp1)) = p1(2dp1 ∧ δ + p1dδ + dg ∧ dp1).

By Lemma 2.2 we have ω = d(p1π
∗α) + π∗σ + d(p2

1θ).
It is easy to see that

ω2 = 2dp1 ∧ π∗α ∧ π∗σ + 4p1dp1 ∧ θ ∧ π∗σ

+2p1dp1 ∧ π∗α ∧ dπ∗α + p2
1vΩ,

where v is a function-germ at 0. We have α∧σ = 0, because ω2|T{p1=0}K4 =
0. From σ|0 = 0, we have

ω2 = 2p1dp1 ∧ π∗α ∧ dπ∗α + p1gΩ,

where g is a function-germ vanishing at 0. From the above we obtain that

α ∧ dα|0 6= 0.

Let

ω0 = d (p1π
∗α) + π∗σ.
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Then

ω2
0 = 2p1dp1 ∧ π∗α ∧ dπ∗α + p1hΩ,

where h is a smooth function-germ at 0 such that h(0) = 0 . One can check
that

ω0|T{p1=0}K4 = dp1 ∧ π∗α + π∗σ = ω|T{p1=0}K4 .

Therefore by Proposition 2.1 there exists a germ of a diffeomorphism Θ :
(K4, 0) → (K4, 0) such that Θ∗ω = ω0 and Θ|{p1=0} = Id{p1=0}.

This finishes the proof of part (a).
Now we prove part (b).
Assumption (2) implies that there exists B 6= 0 such that α1|0 = Bα0|0.

If B 6= 1 then Φ∗ω0 = d(p1π
∗(Bα0)) + π∗σ where Φ is a diffeomorphism-

germ of the form Φ(p) = (Bp1, p2, p3, p4)). Thus we may assume that B = 1.
We use the Moser homotopy method. Let αt = tα1 + (1 − t)α0 and

ωt = d (p1π
∗αt) + π∗σ for t ∈ [0, 1]. It is easy to check that αt ∧ σ = 0.

Now we look for germs of diffeomorphims Φt such that

Φ∗t ωt = ω0, for t ∈ [0; 1], Φ0 = Id. (7)

Differentiating the above homotopy equation by t, we obtain

d(Vtcωt) = d(p1π
∗(α0 − α1)),

where Vt = d
dtΦt. Therefore we have to solve for Vt the following equation

Vtcωt = p1π
∗(α0 − α1). (8)

We calculate the Martinet hypersurface of ωt. ω2
t = 2p1dp1∧π∗(αt∧dαt),

because σ2 = 0, dα2
t = 0 and αt ∧ σ = 0.

α0|0 = α1|0 and there exists A > 0 such that (α1 ∧ dα1)|0 = A(α0 ∧
dα0)|0. It implies that

αt ∧ dαt|0 = (tA + (1− t))(α0 ∧ dα0)|0.
Therefore

dp1 ∧ π∗(αt ∧ dαt)|0 6= 0 (9)

for t ∈ [0; 1]. Thus Σ2(ωt) = {p1 = 0}.
Since Vtcω2

t = 2(Vtcωt) ∧ ωt and Σ2(ωt) = {p1 = 0} is nowhere dense,
equation (8) is equivalent to

Vtcω2
t = 2p1π

∗(α0 − α1) ∧ ωt.
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Therefore we have to solve the following equation

Vtc (2dp1 ∧ π∗(αt ∧ dαt)) = 2π∗(α0 − α1) ∧ ωt. (10)

Hence by (9) we can find a smooth solution Vt of (10) and Vt|0 = 0, be-
cause α1|0 = α0|0 Therefore there exist germs of diffeomorphisms Φt, which
satisfy (7). For t = 1 we have Φ∗1ω1 = ω0.

We call a germ of a closed 2-form σ on K3 realizable with a structurally
smooth Martinet hypersurface if there exists a germ of a singular symplectic
form ω on K4 such that Σ2(ω) = {0} × K3 is structurally smooth and
ω|TΣ2(ω) = σ.

From Martinet’s normal form of type Σ20 we know that all germs of
closed 2-forms on K3 of the rank 2 are realizable with a structurally smooth
Martinet hypersurface (see [12]). From part (a) of the Theorem 2.1 we
obtain the following realization theorem of closed 2-forms on K3 of rank 0
at 0 ∈ K3.

Theorem 2.2. Let σ be a germ of a closed 2-form on K3 and rankσ|0 = 0.
σ is realizable with a structurally smooth Martinet hypersurface if and only
if there exists a germ of a contact form α on K3 such that α ∧ σ = 0.

3. The canonical orientation and the 2-dimensional kernel
of ω at 0

In R-analytic and smooth categories assumption (1) of Theorem 2.1 means
that ω0 and ω1 determine the same orientation. The orientation may be
defined invariantly. Let ω be a germ of a singular symplectic structure
on R4 with a structurally smooth Martinet hypersurface Σ2 at 0. Then
Σ2 = {f = 0} and df |0 6= 0. We define the volume form ΩΣ2 on Σ2 which
determines the orientation of Σ2 in the following way

ΩΣ2 ∧ df =
ω2

f
.

This definition is analogous to the definition in [8] proposed by V. I. Arnol’d.
It is easy to see that this definition of the orientation does not depend on the
choice of f such that Σ2 = {f = 0} and df |0 6= 0. We call this orientation
of Σ2 the canonical orientation of Σ2.

Assumption (2) of Theorem 2.1 can be also expressed invariantly. We call
a subspace ker ω|0 = {v ∈ T0K4 : vcω|0 = 0} the kernel of ω at 0. It is easy
to see that kerω|0 is 2-dimensional subspace of T0Σ2 if ω|T0Σ2 = 0. kerω|0
can be also described as a kernel of a non-vanishing 1-form on Σ2. Let Y be a
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germ of a vector field on K4 that is transversal to Σ2 at 0. Let ι : Σ2 ↪→ K4

be an inclusion. Then the kernel of ι∗(Y cω)|0 is a 2-dimensional linear
subspace of T0Σ2. By Theorem 2.1 it is easy to check that this definition
does not depend on the choice of Y and that the subspace ker ι∗(Y cω)|0
is kerω|0. Assumption (2) of Theorem 2.1 means that kerω0|0 = ker ω1|0,
which is equivalent to ker ι∗(Y cω1)|0 = ker ι∗(Y cω0)|0. Now we formulate
part (b) of Theorem 2.1 invariantly.

In the C-analytic category ω is determined by the restriction to TΣ2

and the 2-dimensional kernel of ω at 0.

Theorem 3.1. Let ω0 and ω1 be germs of C-analytic singular symplectic
forms on C4 with a common structurally smooth Martinet hypersurface Σ2

at 0 and rankι∗ω0|0 = rankι∗ω1|0 = 0.
If ι∗ω0 = ι∗ω1 and kerω0|0 = kerω1|0 then there exists a germ of a

C-analytic diffeomorphism Ψ : (C4, 0) → (C4, 0) such that

Ψ∗ω1 = ω0.

In the R-analytic and smooth categories ω is determined by the restric-
tion to TΣ2, the kernel of ω at 0 and the canonical orientation of Σ2.

Theorem 3.2. Let ω0 and ω1 be germs of smooth (R-analytic) singular
symplectic forms on R4 with a common structurally smooth Martinet hy-
persurface Σ2 at 0 and rankι∗ω0|0 = rankι∗ω1|0 = 0.

If ι∗ω0 = ι∗ω1, kerω0|0 = ker ω1|0 and ω0, ω1 define the same canon-
ical orientation of Σ2 then there exists a germ of a smooth (R-analytic)
diffeomorphism Ψ : (R4, 0) → (R4, 0) such that

Ψ∗ω1 = ω0.

4. Determination by the restriction of ω to TΣ2 and the
canonical orientation

In this section we find conditions in the C-analytic category for the determi-
nation of the equivalence class of a singular symplectic form by its pullback
to the Martinet hypersurface (Theorem 4.1). The same conditions are valid
for the determination of the equivalence class of a singular symplectic form
by its pullback to the Martinet hypersurface and the canonical orientation
in the R-analytic category (Theorem 4.2). In the smooth category we need
a stronger condition to obtain an analogous result.

Theorem 4.1. Let ω0 and ω1 be germs of C-analytic singular symplectic
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forms on C4 with a common structurally smooth Martinet hypersurface Σ2

at 0 and rankι∗ω0|0 = rankι∗ω1|0 = 0.
If ι∗ω0 = ι∗ω1 = σ and there does not exist a germ of a C-analytic

vector field X on Σ2 at 0 such that Xcσ = 0 and X|0 6= 0 then there exists
a germ of a C-analytic diffeomorphism Ψ : (C4, 0) → (C4, 0) such that

Ψ∗ω1 = ω0.

Theorem 4.2. Let ω0 and ω1 be germs of R-analytic singular symplectic
forms on R4 with a common structurally smooth Martinet hypersurface Σ2

at 0 and rankι∗ω0|0 = rankι∗ω1|0 = 0.
If ι∗ω0 = ι∗ω1 = σ, ω0 and ω1 define the same canonical orientation of

Σ2 and there does not exist a germ of an R-analytic vector field X on Σ2 at
0 such that Xcσ = 0 and X|0 6= 0 then there exists a germ of an R-analytic
diffeomorphism Ψ : (R4, 0) → (R4, 0) such that

Ψ∗ω1 = ω0.

Proof. We present the proof of Theorem 4.2. The proof of Theorem 4.1 is
similar.

By Theorem 2.1 we obtain ω0 = d(p1π
∗α0)+σ and ω1 = d(p1π

∗α1)+σ,
where α0, α1 are germs of analytic contact forms on Σ2 = {p1 = 0} such
that α0∧σ = α1∧σ = 0 and α0∧dα0, α1∧dα1 define the same orientation
on Σ2.

α0 is a contact form, therefore α0|0 6= 0. We can find a coordinate system
(x, y, z) on Σ2 such that α0 = f0dx + g0dy + h0dz, where f0, g0 and h0 are
function-germs on Σ2 and h0(0) 6= 0. Let σ = ady∧dz+bdz∧dx+cdx∧dy,
where a, b, c are function-germs on Σ2 vanishing at 0. α0 ∧ σ = 0, thus we
get c = − f0

h0
a− g0

h0
b.

Let α1 = f1dx + g1dy + h1dz, where f1, g1, h1 are functions-germs on
Σ2. From α1 ∧ σ = 0 we obtain the equation

a(f1 − h1

h0
f0) + b(g1 − h1

h0
g0) = 0 (11)

and a(0) = b(0) = 0.
Let l be the greatest common divisor of a and b (GCD(a, b)). Then

a = la1 and b = lb1, where a1 and b1 are germs of analytic functions on
Σ2 and GCD(a1, b1) = 1. Thus σ = l(a1dy ∧ dz + b1dz ∧ dx − ( f0

h0
a1 +

g0
h0

b1)dx ∧ dy). If a1 6= 0 or b1 6= 0 then a germ of an analytic vector field
X = a1

∂
∂x + b1

∂
∂y − ( f0

h0
a1 + g0

h0
b1) ∂

∂z does not vanish at 0. It is easy to see
that Xcσ = 0. Therefore a1(0) = b1(0) = 0.
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Thus the equation (11) has the following form

la1(f1 − h1

h0
f0) = −lb1(g1 − h1

h0
g0)

and GCD(a1, b1) = 1.
Therefore f1− h1

h0
f0 = b1r and g1− h1

h0
g0 = −a1r, where r is a function-

germ on Σ2 at 0.
Then α1 = h1

h0
(f0dx + g0dy + h0dz) + r(b1dx − a1dy). α1|0 6= 0 and

a1(0) = b1(0) = 0 thus h1(0) 6= 0.
Hence α1|0 = h1(0)

h0(0)
α0|0.

It is easy to see that ω2
i = 2p1dp1 ∧ π∗(αi ∧ dαi) for i = 0, 1. Therefore

by assumptions of the theorem we have α1∧dα1 = Aα0∧dα0, where A > 0.
Thus ω0 and ω1 satisfy the assumptions of Theorem 2.1. Then there

exists a germ of an analytic diffeomorphism Ψ : (R4, 0) → (R4, 0) such that

Ψ∗ω1 = ω0.

Now we find the normal form of a germ of a singular symplectic form
on K4 at 0 which does not satisfy the assumptions of the above theorem.
The following result is also true in the smooth category.

Proposition 4.1. Let ω be a germ of a K-analytic singular symplectic
form on K4 with a structurally smooth Martinet hypersurface at 0 and
rankι∗ω|0 = 0.

If there exists a germ of a K-analytic vector field X on Σ2 at 0 such
that Xcσ = 0 and X|0 6= 0 then there exists a germ of a K-analytic diffeo-
morphism Ψ : (K4, 0) → (K4, 0) such that

Ψ∗ω = d(p1(dx + Cdy + zdy)) + g(x, y)dx ∧ dy

or

Ψ∗ω = d(p1(dy + Cdx + zdx)) + g(x, y)dx ∧ dy,

where C ∈ K and g is a K-analytic function-germ on K4 at 0 that does not
depend on p1 and z.

Proof. By Theorem 2.1 we may assume that ω = d (p1π
∗α) + π∗σ, where

σ = ι∗ω and α is a germ of an analytic contact form on Σ2 = {p1 = 0} such
that α∧σ = 0. Let X be a germ of an analytic vector field on Σ2 at 0 such
that Xcσ = 0 and X|0 6= 0. Then we may choose a coordinate system on Σ2

such that X = ∂
∂z . In this system the closed 2-form σ has the following form

σ = h(x, y)dx∧dy, where h is an analytic function-germ on Σ2 at 0 that does
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not depend on z. In this coordinate system α = a(x, y, z)dx + b(x, y, z)dy,
because α ∧ σ = 0. Therefore ω has the following form

ω = d(p1(a(x, y, z)dx + b(x, y, z)dy)) + h(x, y)dx ∧ dy. (12)

a(0) 6= 0 or b(0) 6= 0, because α0 6= 0. Assume that a(0) 6= 0. Then by a
diffeomorphism of the form

Φ : (K4, 0) → (K4, 0); (p1, x, y, z) 7→ (
p1

a(x, y, z)
, x, y, z)

we obtain Φ∗ω = d(p1(dx + b1(x, y, z)dy)) + h(x, y)dx ∧ dy, where
b1(x, y, z) = b(x,y,z)

a(x,y,z) .
But α = dx + b1(x, y, z)dy is a germ of a contact form on Σ2. Therefore

α ∧ dα|0 =
∂b1

∂z
(0)dx ∧ dz ∧ dy 6= 0.

Thus ∂b1
∂z (0) 6= 0.

Then by a diffeomorphism of the form

Φ : (K4, 0) → (K4, 0); (p1, x, y, z) 7→ (p1, x, y, b1(x, y, z)− b1(0))

we obtain Φ∗ω = d(p1(dx+Cdy + zdy))+h(x, y)dx∧ dy, where C = b1(0).
If a(0) = 0 in (12) then b(0) 6= 0 and we obtain Ψ∗ω = d(p1(dy +Cdx+

zdx)) + g(x, y)dx ∧ dy, by the analogous coordinate changes.

Now we need some notions from commutative algebra (see Appendix
1 of [8], [3]) to formulate the result in the smooth category. We recall
that a sequence of elements a1, · · · , ar of a proper ideal I of a ring R is
called regular if a1 is a nonzerodivisor of R and ai is a nonzerodivisor of
R/ < a1, · · · , ai−1 > for i = 2, · · · , r. Here < a1, · · · , ai > denotes the ideal
generated by a1, · · · , ai. The length of a regular sequence a1, · · · , ar is r.

The depth of the proper ideal I of the ring R is the supremum of lengths
of regular sequences in I. We denote it by depth(I). If I = R then we define
depth(I) = ∞.

Let σ be a germ of a smooth (K-analytic) closed 2-form on Σ2 = K3

and rankσ|0 = 0. In the local coordinate system (x, y, z) on Σ2 we have
σ = ady ∧ dz + bdz ∧ dx + cdx ∧ dy, where a, b, c are smooth (K-analytic)
function-germs on Σ2. By I(σ) we denote the ideal of the ring of smooth
(K-analytic) function-germs on Σ2 generated by a, b, c i.e. I(σ) =< a, b, c >.
It is easy to see that I(σ) does not depend on the local coordinate system
on Σ2. σ satisfies the condition α ∧ σ = 0, where α is a germ of a contact
form on K3. It implies that I(σ) is generated by two function-germs.
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In the K-analytic category if depthI(σ) ≥ 2 then the two generators of
I(σ) form a regular sequence of length 2 (see [3]). One can easily check that
it implies that there does not exist a germ of a K-analytic vector field on
Σ2 such that Xcσ = 0 and X|0 6= 0. The inverse implication is not true in
general. Now we formulate the following result in the smooth category.

Theorem 4.3. Let ω0 and ω1 be germs of smooth singular symplectic forms
on R4 with a common structurally smooth Martinet hypersurface Σ2 at 0
and rankι∗ω0|0 = rankι∗ω1|0 = 0.

If ι∗ω0 = ι∗ω1 = σ, ω0 and ω1 define the same canonical orientation of
Σ2 and the two generators of the ideal I(σ) form a regular sequence of length
2 then there exists a germ of a smooth diffeomorphism Ψ : (R4, 0) → (R4, 0)
such that

Ψ∗ω1 = ω0.

Proof. The proof is similar to the proof of Theorem 4.2. By Theorem 2.1 we
obtain ω0 = d(p1π

∗α0)+σ and ω1 = d(p1π
∗α1)+σ, where α0, α1 are germs

of smooth contact forms on Σ2 = {p1 = 0} such that α0 ∧ σ = α1 ∧ σ = 0
and α0 ∧ dα0, α1 ∧ dα1 define the same orientation on Σ2.

α0 is a contact form therefore α0|0 6= 0. We can find a coordinate system
(x, y, z) on Σ2 such that α0 = f0dx + g0dy + h0dz, where f0, g0 and h0 are
function-germs on Σ2 and h0(0) 6= 0. Let σ = ady∧dz+bdz∧dx+cdx∧dy,
where a, b, c are function-germs on Σ2 vanishing at 0. α0 ∧ σ = 0, thus we
get c = − f0

h0
a− g0

h0
b. Thus I(σ) =< a, b, c >=< a, b >.

Let α1 = f1dx + g1dy + h1dz, where f1, g1, h1 are functions-germs on
Σ2. From α1 ∧ σ = 0 we obtain the equation

a(f1 − h1

h0
f0) + b(g1 − h1

h0
g0) = 0 (13)

and a(0) = b(0) = 0.
By assumptions a, b is a regular sequence.
Therefore f1 − h1

h0
f0 = br and g1 − h1

h0
g0 = −ar, where r is a smooth

function-germ on Σ2 at 0.
Then proceeding in the same way as in the proof of Theorem 4.2 we get

the result.
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