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Consider two polynomial functions

g0∶ (C3,0) → (C,0) and g1∶ (C3,0) → (C,0)
such that the corresponding surfaces

V (g0) ∶= {g0 = 0} and V (g1) ∶= {g1 = 0}
in C3 have an isolated singularity at 0

Theorem (Lê-Teissier)

(C3,V (g0))
homeo≃ (C3,V (g1)) near 0

(equivalently, (S5
ε,Kg0)

diffeo≃ (S5
ε,Kg1) for ε small)

∣ ⇒ µ(g0) = µ(g1)

The converse is not true; however, in practice, given g0 and g1 with

µ(g0) = µ(g1) or even with µ∗(g0) = µ∗(g1),
it is difficult to determine whether (S5

ε,Kg0) and (S5
ε,Kg1) are diffeomorphic or not

� Today I will present a class of pairs of surface singularities with the same
µ∗-invariant and which “are likely to” produce non-diffeomorphic embedded links
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Zariski pair of projective curves

We say that a pair of projective curves C0 and C1 in P2 is a Zariski pair if there
exist regular neighbourhoods N0 and N1 of C0 and C1 such that

(N0,C0)
homeo≃ (N1,C1) while (P2,C0)

homeo

/≃ (P2,C1)

µ∗-Zariski pair of surfaces

We start with a Zariski pair of projective curves C0 and C1 defined by reduced
homogeneous polynomials f0(z1, z2, z3) and f1(z1, z2, z3) of degree d , and look at
the affine surfaces in C3 defined by the polynomials

g0 ∶= f0 + zd+m1 and g1 ∶= f1 + zd+m1 (m ≥ 1)

We say that (V (g0),V (g1)), or simply (g0,g1), is a Zariski pair of surfaces if g0

and g1 have an isolated singularity at 0 and the same monodromy zeta-function;
if, in addition, g0 and g1 have the same µ∗-invariant but lie in different
path-connected components of the µ∗-constant stratum, then we say that (g0,g1)
is a µ∗-Zariski pair of surfaces.

� Being a µ∗-Zariski pair of surfaces does not imply (S5
ε,Kg0)

diffeo

/≃ (S5
ε,Kg1), but

it is a necessary condition for that.
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Again, consider a Zariski pair of projective curves C0 and C1 of degree d defined
by reduced homogeneous polynomials

f0(z1, z2, z3) and f1(z1, z2, z3)
By a linear change of coordinates, we may assume that:

1 the singularities of the curves C0 and C1 are not on z1z2z3 = 0

2 f0 and f1 are convenient and Newton non-degenerate on any face of the
Newton diagram with non-maximal dimension

As above, let
g0 ∶= f0 + zd+m1 and g1 ∶= f1 + zd+m1

Theorem (Oka) If the singularities of C0 and C1 are Newton non-degenerate in

some suitable local coordinates, then Kg0

diffeo≃ Kg1

� We expect that (S5
ε,Kg0)

diffeo

/≃ (S5
ε,Kg1)

Theorem (Oka and E.) Under the same assumptions, (g0,g1) is a µ∗-Zariski
pair of surfaces
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Sketch of the proof

1. (g0,g1) is a Zariski pair of surfaces

g0, g1 Newton non-degenerate
Varchenko⇒ ζg0,0(t) = ζg1,0(t)

In our situation, g0, g1 are not Newton non-degenerate. However they are almost
Newton non-degenerate, i.e.,

- convenient;
- Newton non-degenerate on faces of non-maximal dimension;
- with a finite number of 1-dimensional critical loci on the face of maximal

dimension;
- after blowing up, the singularities of their strict transforms in the exceptional

divisor are Newton non-degenerate;

and in this case we can apply Oka’s formula:

ζg ,0(t) = ζgs ,0(t)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

with s /= 0

×(1 − td)µ
tot
(C) × ∏

p∈Σ(C)

ζπ∗g ,p(t)

(by g we mean either g0 or g1; similarly for C)
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Explanations of Oka’s formula

ζg ,0(t) = ζgs ,0(t)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

with s /= 0

×(1 − td)µ
tot
(C) × ∏

p∈Σ(C)

ζπ∗g ,p(t)

� Consider blowing-up π∶X → C3 at 0. Over C3 ∖V (g), π is a biholomorphism,
so the Milnor fibration g ∶ Bε(0) ∩ g−1(D ∖ {0}) → D ∖ {0} can be “lifted” to X ,
so that

π∗g ∶ π−1(Bε(0) ∩ g−1(Dδ ∖ {0})) → Dδ ∖ {0}
is also a locally trivial fibration isomorphic to the Milnor fibration of g at 0

� Take the standard affine chart U1 ∶= P2 ∖ {Z1 = 0} of P2 with coordinates
(Z2/Z1,Z3/Z1), and in the corresponding chart X ∩ (C3 ×U1) of X with
coordinates (z1,Z2/Z1,Z3/Z1) =∶ (y1, y2, y3),

π∗g = yd
1 (f (1, y2, y3) + ym

1 ) (again, f is either f0 or f1)
� Decompose the lifted Milnor fibration π∗g into the local Milnor fibrations at
the singular points of C and the fibration on their complement

� The Oka formula says that ζg ,0(t) is the product of the zeta-functions of these
local Milnor fibrations and the fibration on the complement
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Coming back to the proof

It suffices to show that the zeta-functions of the local Milnor fibrations at the
singular points of C0 and C1 coincide

∃ local coordinates x ≡ (x1, x2, x3) near p0 ∈ Σ(C0) and u ≡ (u1,u2,u3) near
p1 ∈ Σ(C1) such that

π∗g0 = xd1 (h0(x2, x3) + xm1 ) and π∗g1 = ud1 (h1(u2,u3) + um1 )
and h0 and h1 are Newton non-degenerate; moreover, if (C0,p0) ∼ (C1,p1), we
may assume that Γ(h0) = Γ(h1); so π∗g0 and π∗g1 are Newton non-degenerate
with the same Newton diagram, and by Varchenko’s theorem,

ζπ∗g0,p0(t) = ζπ∗g1,p1(t)

2. g0 and g1 have the same µ∗-invariant; it is given by

((d − 1)3 +mµtot(C)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Milnor number

, (d − 1)2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

Milnor number of
generic plane section

, d − 1)
´¹¹¹¹¸¹¹¹¹¶

multiplicity −1
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3. g0 and g1 are in different path-connected components of µ∗-const stratum

We argue by contradiction. Assume they are in the same component.

Step 1 There exists a µ∗-constant piecewise complex-analytic family {gs}0≤s≤1

connecting g0 and g1

In particular, mult0(gs) is constant, and in(gs) has degree d ; moreover, in(gs) is
reduced, and so the corresponding curve Cs has only isolated singularities

� Suppose in(gs) is not reduced, and take generic plane H and coordinates
(x , y) for H such that

in(gs)∣H = `p1

1 (x , y)⋯`
pq
q (x , y) = xp1`p2

2 (x , y)⋯`
pq
q (x , y) with p1 ≥ 2

G( g0∣H )

G( gs∣H )
G

+
(i n (g s)∣H )

p d

d

d+c

d+e

0

Since p1 ≥ 2, we have

ν(gs ∣H)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

2 (area dark+light gray)
−(d + c) − (d + e) + 1

> ν(g0∣H)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

2 (area dark gray)
−2d + 1

= (d − 1)2

It follows that

µ(2)(gs) ∶= µ(gs ∣H) ≥ ν(gs ∣H) > ν(g0∣H) = (d − 1)2 = µ(2)(g0) – a contradiction
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Step 2 µtot(Cs) is independent of s

Indeed, by A’Campo formula, ζgs ,0(t) is uniquely written as

ζgs ,0(t) =
`

∏
i=1

(1 − tdi )νi

where d1, . . . ,d` are mutually disjoint.

� min{d1, . . . ,d`} is called the zeta-multiplicity

� the factor (1 − tdi )νi corresponding to di = zeta-multiplicity is called the
zeta-multiplicity factor

1 ζgs ,0(t) is independent of s (Teissier); in particular, the zeta-multiplicity and
the zeta-multiplicity factor are independent of s

2 The zeta-multiplicity is d and the zeta-multiplicity factor is

(1 − td)−d
2
+3d−3+µtot

(Cs)
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Step 3 We conclude thanks to two theorems of Lê

Theorem 1 (Lê) Assume that at s = s0, the family {gs} has a bifurcation of
singularities in a small ball B centred at a singular point p0 of Cs0 . Then for
s /= s0 near s0,

∑
p∈B∩Σ(Cs)

µ(Cs ,p) < µ(Cs0 ,p0)

� So, if such an s0 exists, then µtot(Cs) < µtot(Cs0) – a contradiction

Theorem 2 (Lê)

No bifurcation of singularities ⇒ topological type of (P2,Cs) independent of s

� In particular (P2,C0)
homeo≃ (P2,C1), and therefore (C0,C1) is not a Zariski pair

of curves – a contradiction
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Thank you for your attention!
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