Zeta-function and μ^{*}-Zariski pairs of surfaces

Christophe Eyral
joint work with Mutsuo Oka

Consider two polynomial functions

$$
g_{0}:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0) \quad \text { and } \quad g_{1}:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0)
$$

such that the corresponding surfaces

$$
V\left(g_{0}\right):=\left\{g_{0}=0\right\} \quad \text { and } \quad V\left(g_{1}\right):=\left\{g_{1}=0\right\}
$$

in \mathbb{C}^{3} have an isolated singularity at 0

Theorem (Lê-Teissier)

$\left(\mathbb{C}^{3}, V\left(g_{0}\right)\right) \stackrel{\text { homeo }}{=}\left(\mathbb{C}^{3}, V\left(g_{1}\right)\right)$ near 0
(equivalently, $\left(\mathbb{S}^{5}, K_{g_{0}}\right) \stackrel{\text { diffeo }}{\sim}\left(\mathbb{S}^{5}, K_{g_{1}}\right)$ for ε small) $\Rightarrow \mu\left(g_{0}\right)=\mu\left(g_{1}\right)$

The converse is not true; however, in practice, given g_{0} and g_{1} with

$$
\mu\left(g_{0}\right)=\mu\left(g_{1}\right) \quad \text { or even with } \quad \mu^{*}\left(g_{0}\right)=\mu^{*}\left(g_{1}\right),
$$

it is difficult to determine whether $\left(\mathbb{S}_{\varepsilon}^{5}, K_{g_{0}}\right)$ and $\left(\mathbb{S}_{\varepsilon}^{5}, K_{g_{1}}\right)$ are diffeomorphic or not
 μ^{*}-invariant and which "are likely to" produce non-diffeomorphic embedded links

Zariski pair of projective curves

We say that a pair of projective curves C_{0} and C_{1} in \mathbb{P}^{2} is a Zariski pair if there exist regular neighbourhoods N_{0} and N_{1} of C_{0} and C_{1} such that

$$
\left(N_{0}, C_{0}\right) \stackrel{\text { homeo }}{\sim}\left(N_{1}, C_{1}\right) \text { while }\left(\mathbb{P}^{2}, C_{0}\right) \stackrel{\text { homeo }}{\neq\left(\mathbb{P}^{2}, C_{1}\right) .}
$$

μ^{*}-Zariski pair of surfaces

We start with a Zariski pair of projective curves C_{0} and C_{1} defined by reduced homogeneous polynomials $f_{0}\left(z_{1}, z_{2}, z_{3}\right)$ and $f_{1}\left(z_{1}, z_{2}, z_{3}\right)$ of degree d, and look at the affine surfaces in \mathbb{C}^{3} defined by the polynomials

$$
g_{0}:=f_{0}+z_{1}^{d+m} \quad \text { and } \quad g_{1}:=f_{1}+z_{1}^{d+m} \quad(m \geq 1)
$$

We say that $\left(V\left(g_{0}\right), V\left(g_{1}\right)\right)$, or simply $\left(g_{0}, g_{1}\right)$, is a Zariski pair of surfaces if g_{0} and g_{1} have an isolated singularity at 0 and the same monodromy zeta-function; if, in addition, g_{0} and g_{1} have the same μ^{*}-invariant but lie in different path-connected components of the μ^{*}-constant stratum, then we say that (g_{0}, g_{1}) is a μ^{*}-Zariski pair of surfaces.
뭅 Being a μ^{*}-Zariski pair of surfaces does not imply $\left(\mathbb{S}_{\varepsilon}^{5}, K_{g_{0}}\right) \neq\left(\mathbb{S}_{\varepsilon}^{5}, K_{g_{1}}\right)$, but it is a necessary condition for that.

Again, consider a Zariski pair of projective curves C_{0} and C_{1} of degree d defined by reduced homogeneous polynomials

$$
f_{0}\left(z_{1}, z_{2}, z_{3}\right) \quad \text { and } \quad f_{1}\left(z_{1}, z_{2}, z_{3}\right)
$$

By a linear change of coordinates, we may assume that:
(1) the singularities of the curves C_{0} and C_{1} are not on $z_{1} z_{2} z_{3}=0$
(2) f_{0} and f_{1} are convenient and Newton non-degenerate on any face of the Newton diagram with non-maximal dimension

As above, let

$$
g_{0}:=f_{0}+z_{1}^{d+m} \quad \text { and } \quad g_{1}:=f_{1}+z_{1}^{d+m}
$$

Theorem (Oka) If the singularities of C_{0} and C_{1} are Newton non-degenerate in some suitable local coordinates, then $K_{g_{0}} \stackrel{\text { diffeo }}{\simeq} K_{g_{1}}$
WRe expect that $\left(\mathbb{S}_{\varepsilon}^{5}, K_{g_{0}}\right) \stackrel{\text { difife }}{\not ㇒}\left(\mathbb{S}_{\varepsilon}^{5}, K_{g_{1}}\right)$
Theorem (Oka and E.) Under the same assumptions, $\left(g_{0}, g_{1}\right)$ is a μ^{*}-Zariski pair of surfaces

Sketch of the proof

1. $\left(g_{0}, g_{1}\right)$ is a Zariski pair of surfaces
g_{0}, g_{1} Newton non-degenerate $\stackrel{\text { Varchenko }}{\Rightarrow} \zeta_{g_{0}, 0}(t)=\zeta_{g_{1}, 0}(t)$
In our situation, g_{0}, g_{1} are not Newton non-degenerate. However they are almost Newton non-degenerate, i.e.,

- convenient;
- Newton non-degenerate on faces of non-maximal dimension;
- with a finite number of 1-dimensional critical loci on the face of maximal dimension;
- after blowing up, the singularities of their strict transforms in the exceptional divisor are Newton non-degenerate;
and in this case we can apply Oka's formula:

$$
\zeta_{g, 0}(t)=\underbrace{\zeta_{g_{s}, 0}(t)}_{\text {with } s \neq 0} \times\left(1-t^{d}\right)^{\mu^{\text {tot }}(C)} \times \prod_{\mathrm{p} \in \Sigma(C)} \zeta_{\pi^{*} g, \mathrm{p}}(t)
$$

(by g we mean either g_{0} or g_{1}; similarly for C)

Explanations of Oka's formula

$$
\zeta_{g, 0}(t)=\underbrace{\zeta_{g}, 0}_{\text {with } s \neq 0}(t) \times\left(1-t^{d}\right)^{\mu^{\text {tot }}(C)} \times \prod_{p \in \Sigma(C)} \zeta_{\pi^{*} g, \mathfrak{p}}(t)
$$

- Consider blowing-up $\pi: X \rightarrow \mathbb{C}^{3}$ at 0 . Over $\mathbb{C}^{3} \backslash V(g), \pi$ is a biholomorphism, so the Milnor fibration $g: B_{\varepsilon}(0) \cap g^{-1}(D \backslash\{0\}) \rightarrow D \backslash\{0\}$ can be "lifted" to X, so that

$$
\pi^{*} g: \pi^{-1}\left(B_{\varepsilon}(0) \cap g^{-1}\left(D_{\delta} \backslash\{0\}\right)\right) \rightarrow D_{\delta} \backslash\{0\}
$$

is also a locally trivial fibration isomorphic to the Milnor fibration of g at 0

- Take the standard affine chart $U_{1}:=\mathbb{P}^{2} \backslash\left\{Z_{1}=0\right\}$ of \mathbb{P}^{2} with coordinates $\left(Z_{2} / Z_{1}, Z_{3} / Z_{1}\right)$, and in the corresponding chart $X \cap\left(\mathbb{C}^{3} \times U_{1}\right)$ of X with coordinates $\left(z_{1}, Z_{2} / Z_{1}, Z_{3} / Z_{1}\right)=:\left(y_{1}, y_{2}, y_{3}\right)$,

$$
\pi^{*} g=y_{1}^{d}\left(f\left(1, y_{2}, y_{3}\right)+y_{1}^{m}\right) \quad\left(\text { again, } f \text { is either } f_{0} \text { or } f_{1}\right)
$$

- Decompose the lifted Milnor fibration $\pi^{*} g$ into the local Milnor fibrations at the singular points of C and the fibration on their complement
- The Oka formula says that $\zeta_{g, 0}(t)$ is the product of the zeta-functions of these local Milnor fibrations and the fibration on the complement

Coming back to the proof

It suffices to show that the zeta-functions of the local Milnor fibrations at the singular points of C_{0} and C_{1} coincide
\exists local coordinates $x \equiv\left(x_{1}, x_{2}, x_{3}\right)$ near $p_{0} \in \Sigma\left(C_{0}\right)$ and $u \equiv\left(u_{1}, u_{2}, u_{3}\right)$ near $p_{1} \in \Sigma\left(C_{1}\right)$ such that

$$
\pi^{*} g_{0}=x_{1}^{d}\left(h_{0}\left(x_{2}, x_{3}\right)+x_{1}^{m}\right) \quad \text { and } \quad \pi^{*} g_{1}=u_{1}^{d}\left(h_{1}\left(u_{2}, u_{3}\right)+u_{1}^{m}\right)
$$

and h_{0} and h_{1} are Newton non-degenerate; moreover, if $\left(C_{0}, p_{0}\right) \sim\left(C_{1}, p_{1}\right)$, we may assume that $\Gamma\left(h_{0}\right)=\Gamma\left(h_{1}\right)$; so $\pi^{*} g_{0}$ and $\pi^{*} g_{1}$ are Newton non-degenerate with the same Newton diagram, and by Varchenko's theorem,

$$
\zeta_{\pi^{*} g_{0}, \mathrm{p}_{0}}(t)=\zeta_{\pi^{*} g_{1}, \mathrm{p}_{1}}(t)
$$

2. g_{0} and g_{1} have the same μ^{*}-invariant; it is given by

$$
(\underbrace{(d-1)^{3}+m \mu^{\text {tot }}(C)}_{\text {Milinor number }}, \underbrace{(d-1)^{2}}_{\substack{\text { Milior number of } \\ \text { generic plane section }}}, \underbrace{d-1)}_{\text {mutitipicity }-1}
$$

3. g_{0} and g_{1} are in different path-connected components of μ^{*}-const stratum We argue by contradiction. Assume they are in the same component.

Step 1 There exists a μ^{*}-constant piecewise complex-analytic family $\left\{g_{s}\right\}_{0 \leq s \leq 1}$ connecting g_{0} and g_{1}

In particular, mult $_{0}\left(g_{s}\right)$ is constant, and $\operatorname{in}\left(g_{s}\right)$ has degree d; moreover, $\operatorname{in}\left(g_{s}\right)$ is reduced, and so the corresponding curve C_{s} has only isolated singularities

- Suppose in $\left(g_{s}\right)$ is not reduced, and take generic plane H and coordinates (x, y) for H such that

$$
\left.\operatorname{in}\left(g_{s}\right)\right|_{H}=\ell_{1}^{p_{1}}(x, y) \cdots \ell_{q}^{p_{q}}(x, y)=x^{p_{1}} \ell_{2}^{p_{2}}(x, y) \cdots \ell_{q}^{p_{q}}(x, y) \text { with } p_{1} \geq 2
$$

Since $p_{1} \geq 2$, we have

$\mu^{(2)}\left(g_{s}\right):=\mu\left(\left.g_{s}\right|_{H}\right) \geq \nu\left(\left.g_{s}\right|_{H}\right)>\nu\left(\left.g_{0}\right|_{H}\right)=(d-1)^{2}=\mu^{(2)}\left(g_{0}\right)$ - a contradiction

Step $2 \mu^{\text {tot }}\left(C_{s}\right)$ is independent of s
Indeed, by A^{\prime} Campo formula, $\zeta_{g_{s}, 0}(t)$ is uniquely written as

$$
\zeta_{g_{s}, 0}(t)=\prod_{i=1}^{\ell}\left(1-t^{d_{i}}\right)^{\nu_{i}}
$$

where d_{1}, \ldots, d_{ℓ} are mutually disjoint.

- $\min \left\{d_{1}, \ldots, d_{\ell}\right\}$ is called the zeta-multiplicity
- the factor $\left(1-t^{d_{i}}\right)^{\nu_{i}}$ corresponding to $d_{i}=$ zeta-multiplicity is called the zeta-multiplicity factor
(1) $\zeta_{g_{s}, 0}(t)$ is independent of s (Teissier); in particular, the zeta-multiplicity and the zeta-multiplicity factor are independent of s
(2) The zeta-multiplicity is d and the zeta-multiplicity factor is

$$
\left(1-t^{d}\right)^{-d^{2}+3 d-3+\mu^{\mathrm{tot}}\left(C_{s}\right)}
$$

Step 3 We conclude thanks to two theorems of Lê
Theorem 1 （Lê）Assume that at $s=s_{0}$ ，the family $\left\{g_{s}\right\}$ has a bifurcation of singularities in a small ball B centred at a singular point p_{0} of $C_{s_{0}}$ ．Then for $s \neq s_{0}$ near s_{0} ，

$$
\sum_{p \in B \cap \Sigma\left(C_{s}\right)} \mu\left(C_{s}, p\right)<\mu\left(C_{s_{0}}, p_{0}\right)
$$

［18 So，if such an s_{0} exists，then $\mu^{\text {tot }}\left(C_{s}\right)<\mu^{\text {tot }}\left(C_{s_{0}}\right)$－a contradiction

Theorem 2 （Lê）

No bifurcation of singularities \Rightarrow topological type of $\left(\mathbb{P}^{2}, C_{s}\right)$ independent of s IR⿸尸⿹勹口⿱⿰㇒一乂凵：In particular $\left(\mathbb{P}^{2}, C_{0}\right) \stackrel{\text { homeo }}{=}\left(\mathbb{P}^{2}, C_{1}\right)$ ，and therefore $\left(C_{0}, C_{1}\right)$ is not a Zariski pair of curves－a contradiction

Thank you for your attention!

