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1 Zariski’s famous Multiplicity Conjecture, stated by Zariski in
1971, is formulated as follows:

Zariski’s Multiplicity Conjecture Let f , g : (Cn, 0)→ (C, 0)
be two reduced complex analytic functions. If there is a
homeomorphism ϕ : (Cn,V(f ), 0)→ (Cn,V(g), 0), then
m(V(f ), 0) = m(V(g), 0).

2 This is still an open problem for n > 2: Zariski gave a
positive answer only when n = 2.



1 Zariski’s famous Multiplicity Conjecture, stated by Zariski in
1971, is formulated as follows:

Zariski’s Multiplicity Conjecture Let f , g : (Cn, 0)→ (C, 0)
be two reduced complex analytic functions. If there is a
homeomorphism ϕ : (Cn,V(f ), 0)→ (Cn,V(g), 0), then
m(V(f ), 0) = m(V(g), 0).

2 This is still an open problem for n > 2: Zariski gave a
positive answer only when n = 2.



In the real case, of course, Zariski’s Multiplicity Conjecture does
not hold in the same form as in the complex case. However, we
have the following conjecture, stated by Fukui, Kurdyka and
Paunescu in 2004:

Fukui-Kurdyka-Paunescu’s Conjecture Let X,Y ⊂ Rn be two
germs at the origin of irreducible real analytic subsets. If
h : (Rn, 0)→ (Rn, 0) is the germ of a subanalytic, arc-analytic
and bi-Lipschitz homeomorphism such that h(X) = Y, then
m(X, 0) ≡ m(Y, 0) mod 2.

Let us recal that in the real case m(X, 0) = m(XC, 0) where XC is
a complexification of X. Similarly we define the real degree of
real algebraic set.



1 Several authors approached this conjecture: For example,
J.-J. Risler proved that multiplicity mod 2 of a real analytic
curve is invariant under bi-Lipschitz homeomorphisms; T.
Fukui, K. Kurdyka and L. Paunescu also confirmed the
conjecture in the case that X and Y are real analytic
curves.

2 G. Valette in 2010 showed that multiplicity mod 2 of real
analytic hypersurfaces is invariant under arc-analytic
bi-Lipschitz homeomorphisms. Sampaio proved in the real
version of Gau-Lipman’s theorem: i.e., multiplicity mod 2 of
real analytic sets is invariant under homeomorphisms
ϕ : (Rn, 0)→ (Rn, 0) such that ϕ and ϕ−1 have a derivative
at the origin.

3 In this paper, we give a complete, positive answer to
Fukui-Kurdyka-Paunescu’s Conjecture. A global version of
this conjecture is also proved.
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Coming back to the complex case, let us list some contributions
to Zariski’s Multiplicity Conjecture from the Lipschitz point of
view. For instance, Neumann and Pichon, with previous
contributions of Pham and Teissier and Fernandes, proved that
the bi-Lipschitz geometry of plane curves determines the
Puiseux pairs, and as a consequence if two germs of complex
analytic curves with any codimension are bi-Lipschitz
homeomorphic (with respect to the outer metric), then they
have the same multiplicity.



1 Comte in 1998 proved that multiplicity of complex analytic
germs (not necessarily codimension 1 sets) is invariant
under bi-Lipschitz homeomorphisms with the severe
assumption that the Lipschitz constants are close enough
to 1. This motivated the following conjecture (Bobadila,
Fernandes, Sampaio):

2 Conjecture 1 Let X ⊂ Cn and Y ⊂ Cm be two complex
analytic sets with dim X = dim Y = d. If their germs at zero
are bi-Lipschitz homeomorphic, then their multiplicities
m(X, 0) and m(Y, 0) are equal.
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1 Bobadila, Fernandes, Sampaio posed also the following
conjecture:

2 Conjecture 2 Let X ⊂ Cn and Y ⊂ Cm be two complex
algebraic sets with dim X = dim Y = d. If X and Y are
bi-Lipschitz homeomorphic at infinity, then deg(X) = deg(Y).
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1 Conjectures 1 and 2 are equivalent and, moreover, have
positive answers for d = 1 and d = 2.

2 However, Birbrair, Rernandes, Sampaio and Verbitsky
disproved these conjectures when d ≥ 3, by showing
explicit counter-examples. More precisely, it was shown
that we have two different embeddings of P1(C)× P1(C)
into P5(C), say X and Y, such that their affine cones
Cone(X),Cone(Y) ⊂ C6 are bi-Lipschitz equivalent, but
they have different degrees.



1 Conjectures 1 and 2 are equivalent and, moreover, have
positive answers for d = 1 and d = 2.

2 However, Birbrair, Rernandes, Sampaio and Verbitsky
disproved these conjectures when d ≥ 3, by showing
explicit counter-examples. More precisely, it was shown
that we have two different embeddings of P1(C)× P1(C)
into P5(C), say X and Y, such that their affine cones
Cone(X),Cone(Y) ⊂ C6 are bi-Lipschitz equivalent, but
they have different degrees.



1 Recently, Jelonek proved that the multiplicity of complex
analytic sets is invariant under bi-Lipschitz
homeomorphisms which have analytic graphs, and the
degree of complex algebraic sets is invariant under
bi-Lipschitz homeomorphisms (at infinity) which have
algebraic graph.

2 In this paper, we prove some generalizations of the results
proved by Jelonek. For instance, we show that the
multiplicity of complex analytic sets is invariant under
semi-bi-Lipschitz homeomorphisms which have analytic
graph and the degree of complex algebraic sets is invariant
under semi-bi-Lipschitz homeomorphisms at infinity which
have algebraic graph.

3 We also prove that degree of a complex algebraic set is
invariant under semialgebraic semi-bi-Lipschitz
homeomorphisms at infinity such that the closure of their
graphs are orientable homological cycles.
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1 Definition Let X ⊂ Rn and Y ⊂ Rm be two sets and let
h : X → Y.

2 We say that h is Lipschitz if there exists a positive
constant C such that

‖h(x)− h(y)‖ ≤ C‖x− y‖, ∀x, y ∈ X.

3 We say that h is bi-Lipschitz if h is a homeomorphism, it is
Lipschitz and its inverse is also Lipschitz.

4 We say that h is bi-Lipschitz at infinity (resp. a
homeomorphism at infinity) if there exist compact
subsets K ⊂ Rn and K′ ⊂ Rm such that
h|X\K : X \ K → Y \ K′ is bi-Lipschitz (resp. a
homeomorphism).
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1 We say that h is semi-Lipschitz at x0 ∈ X if there exist a
positive constant C such that

‖h(x)− h(x0)‖ ≤ C‖x− x0‖, ∀x ∈ X.

2 We say that h is semi-bi-Lipschitz if h is a
homeomorphism, it is semi-Lipschitz at x0 and its inverse is
also semi-Lipschitz at h(x0).

3 We say that h is semi-bi-Lipschitz at infinity if there exist
compact subsets K ⊂ Rn and K′ ⊂ Rm such that
h|X\K : X \ K → Y \ K′ is semi-bi-Lipschitz at some point
x0 ∈ X \ K.
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1 Now we give a geometric characterization of
semi-bi-Lipschitz mappings.

2 Definition Let Ls,Hn−s−1 be two disjoint linear subspaces
of Pn(C). Let π∞ be a hyperplane (a hyperplane at infinity)
and assume that Ls ⊂ π∞. The projection πL with center Ls

is the mapping

πL : Cn = Pn(C)\π∞ 3 x 7→ 〈Ls, x〉∩Hn−s−1 ∈ Hn−s−1\π∞ = Cn−s−1.

Here 〈L, x〉 we mean the linear projective subspace
spanned by L and {x}.
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1 Lemma 1 Let X be a closed subset of Cn. Denote by
Λ0 ⊂ π∞ the set of directions of all secants of X which
contain x0 and let Σ0 = Λ0, where π∞ is the hyperplane at
infinity and we consider the euclidean closure. Let
πL : Cn → Cl be the projection with center L. Then πL|X is
semi-bi-Lipschitz at x0 if and only if L ∩ Σ0 = ∅.

2 Lemma 2 Let X ⊂ Cn be a closed set and let f : X → Cm be
a semi-Lipschitz homeomorphism. Let
Y := graph(f ) ⊂ Cn × Cm. Then the mapping
φ : X 3 x 7→ (x, f (x)) ∈ Y is a semi-bi-Lipschitz
homeomorphism.

3 Remark It is easy to note that Lemmas 1 and 2 hold in the real
case also.
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Definition
Let A ⊂ Rn be a subset. We say that v ∈ Rn is a tangent vector to A at p ∈ A (resp. at
infinity) if there is a sequence of points {xi}i∈N ⊂ A such that lim

i→∞
‖xi − p‖ = 0 (resp.

lim
i→∞
‖xi‖ = +∞) and there is a sequence of positive numbers {ti}i∈N ⊂ R+ such that

lim
i→∞

1
ti
(xi − p) = v (resp. lim

i→∞

1
ti

xi = v).

Let C(A, p) (resp. C∞(A)) denote the set of all tangent vectors to A at p (resp. at
infinity). The subset C(A, p) (resp. C∞(A)) is called the tangent cone of A at p (resp.
at infinity).



Definition
Let X ⊂ Rn and Y ⊂ Rm be subanalytic sets with 0 ∈ X and 0 ∈ Y and let
h : (X, 0)→ (Y, 0) be a subanalytic Lipschitz mapping. We define the
pseudo-derivative of h at 0, d0h : C(X, 0)→ C(Y, 0), by d0h(v) = lim

t→0+

h(γ(t))
t , where

γ : [0,+ε)→ X satisfies lim
t→0+

γ(t)
t = v.



Definition
Let X ⊂ Rn and Y ⊂ Rm be semialgebraic sets and let h : X → Y be a semialgebraic
Lipschitz mapping. We define the pseudo-derivative of h at infinity
d∞h : C(X,∞)→ C(Y,∞) by d∞h(v) = lim

t→+∞
h(γ(t))

t , where γ : (r,+∞)→ X satisfies

lim
t→+∞

γ(t)
t = v.



1 Homological cycles.

2 Let M be a smooth compact manifold of (real) dimension n.
Given homology classes α ∈ Hk(M) and β ∈ Hn−k(M), we
choose representative cycles α̃ and β̃, respectively.

3 We can assume that every singular simplex appearing in
each of these cycles is a smooth mapping and also that
any two simplices meet transversally. This means that the
only points of intersection are where the interior of a
k-simplex in α̃ meets the interior of an (n− k)-simplex in β̃.
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1 At every such point x of intersection both α̃ and β̃ are local
embeddings and their tangent spaces are complementary
in TxM. We assign a sign to each point of intersection by
comparing the direct sum of the orientations of the tangent
spaces of α̃ and of β̃ with the ambient orientation of the
tangent space of M. The sum of the signs over the (finitely
many) points of intersection gives the intersection pairing
applied to (α, β).

2 If M = Pn(C), then H2i(M,Z) = Z for i = 0, 1, . . . , n and
H2i−1(M,Z) = 0. The space H2i(M,Z) is generated by the
class Ln−i where L is a hyperplane, and we consider it as
an algebraic cycle. Hence every 2i-dimensional
homological cycle α can be described as dLn−i. We say
that the number |d| is the topological degree of α. Note
that if X ⊂ M is an i-dimensional projective subvariety, then
the algebraic degree of X coincides with the topological
degree.
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1 Similarly, if M = Pn(R), then Hi(M,Z/(2)) = Z/(2) for
i = 0, 1, . . . , n. The space Hi(M,Z/(2)) is generated by the
class Ln−i where L is a hyperplane and we consider it as
an algebraic cycle. Hence every i-dimensional homological
cycle α can be described as dLn−i. We say that the number
d is the topological degree mod 2 of α. Note that if
X ⊂ M is an i-dimensional projective subvariety, then the
algebraic degree mod 2 coincides with the topological
degree.

2 Let R = Z or R = Z/(2). Let X be a compact semi-algebraic
set of dimension d. We say that X is a homological cycle
over R, if there exists a stratification S of X such that it
gives on X a structure of a R-homological d-cycle α. We
say that this cycle is orientable if R = Z and [α] 6= 0 in
Hd(X,Z). It is well known that if X ⊂ Pn(C) is an irreducible
algebraic variety, then it is an orientable homological cycle.



1 Similarly, if M = Pn(R), then Hi(M,Z/(2)) = Z/(2) for
i = 0, 1, . . . , n. The space Hi(M,Z/(2)) is generated by the
class Ln−i where L is a hyperplane and we consider it as
an algebraic cycle. Hence every i-dimensional homological
cycle α can be described as dLn−i. We say that the number
d is the topological degree mod 2 of α. Note that if
X ⊂ M is an i-dimensional projective subvariety, then the
algebraic degree mod 2 coincides with the topological
degree.

2 Let R = Z or R = Z/(2). Let X be a compact semi-algebraic
set of dimension d. We say that X is a homological cycle
over R, if there exists a stratification S of X such that it
gives on X a structure of a R-homological d-cycle α. We
say that this cycle is orientable if R = Z and [α] 6= 0 in
Hd(X,Z). It is well known that if X ⊂ Pn(C) is an irreducible
algebraic variety, then it is an orientable homological cycle.



1 Theorem 1 Let X ⊂ Cn,Y ⊂ Cm be complex algebraic
varieties of dimension d and let h : X → Y be a
semialgebraic and semi-bi-Lipschitz homeomorphism.
Assume that the closure of Graph(h) in Pn+m(C) is an
orientable homological cycle. Then deg(X) = deg(Y).

2 In the same way (in fact the proof is simpler, because we
do not have to control the orientation) we have:

3 Theorem 2 Let X ⊂ Rn,Y ⊂ Rm be real algebraic sets and
let h : X → Y be a semialgebraic and semi-bi-Lipschitz
homeomorphism. Assume that the projective closure of
the graph of h is a Z/(2) homological cycle. Then
deg(X) = deg(Y) mod 2.
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1 Theorem 2 holds if X,Y are subanalytic sets with
subanalytic projective closures, which are homological
cycles, e.g, for subanalytic cones with Euler links.

2 Corollary 1 Let X ⊂ Cn,Y ⊂ Cm be complex algebraic sets
and let h : X → Y be a mapping. Assume that h is
semi-bi-Lipschitz at infinity and its graph is a complex
algebraic set. Then deg(X) = deg(Y).

3 Corollary 2 Let X ⊂ Cn,Y ⊂ Cm be complex algebraic sets
and let h : X → Y be a semialgebraic and bi-Lipschitz
homeomorphism. Assume that d∞h is C-homogeneous.
Then deg(X) = deg(Y).

4 Corollary 3 Let X ⊂ Rn,Y ⊂ Rm be complex algebraic sets
and let h : X → Y be a semialgebraic and bi-Lipschitz
homeomorphism. Assume that T∞X is a full cone and d∞h
is R-homogeneous. Then deg(X) = deg(Y).
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1 Definition(Parusiński) We say that E ⊂ PN(R) is
arc-symmetric if for any analytic arc γ : (−1, 1)→ PN(R)
such that γ((−1, 0)) ⊂ E, we have γ((0, ε)) ⊂ E, for some
ε > 0.

2 Theorem Let A ⊂ Rn,B ⊂ Rm be real algebraic
d-dimensional sets and let h : A→ B be a semialgebraic
and semi-bi-Lipschitz homeomorphism. If the graph of h is
arc-symmetric, then deg(A) ≡ deg(B) mod 2.

3 Corollary Let A ⊂ Rn,B ⊂ Rm be real algebraic
d−dimensional sets and let h : A→ B be a polynomial (or
even regular) and semi-bi-Lipschitz homeomorphism.
Then deg(A) ≡ deg(B) mod 2.
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1 Definition Let X ⊂ Rn and Y ⊂ Rm be analytic subsets and
let X be the closure of X in Pn(R). We say that a mapping
f : X → Y is arc-analytic at X if for any analytic arc
γ : (−1, 1)→ Pn(R) such that γ((−1, 0) ∪ (0, 1)) ⊂ X, we
have f ◦ γ|(−1,0)∪(0,1) extends to an analytic arc
γ̃ : (−1, 1)→ Pm(R).

2 The global version of Fukui-Kurdyka-Paunescu’s
Conjecture Let A ⊂ Rn,B ⊂ Rm be real algebraic
d−dimensional sets, let A be the closure of A in Pn(R) and
let h : A→ B be a semialgebraic and semi-bi-Lipschitz
homeomorphism. Assume that h is arc-analytic at A. Then
deg(A) ≡ deg(B) mod 2.
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1 Definition The mapping βn : Sn−1 × R+ → Rn given by
βn(x, r) = rx is called the spherical blowing-up (at the
origin) of Rn.

2 Note that βn : Sn−1 × (0,+∞)→ Rn \ {0} is a
homeomorphism with inverse
β−1

n : Rn \ {0} → Sn−1 × (0,+∞) given by
β−1

n (x) = ( x
‖x‖ , ‖x‖).

3 Definition. The strict transform of the subset X under the
spherical blowing-up βn is X′ := β−1

n (X \ {0}) and the
boundary ∂X′ of the strict transform is
∂X′ := X′ ∩ (Sn−1 × {0}).

4 Note that ∂X′ = CX × {0}, where CX = C(X, 0) ∩ Sn−1.
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1 Definition Let X ⊂ Rn be a subanalytic set such that 0 ∈ X
is a non-isolated point. We say that x ∈ ∂X′ is a simple
point of ∂X′ if there is an open U ⊂ Rn+1 with x ∈ U such
that:

a) the connected components of (X′ ∩U) \ ∂X′, say X1, . . . ,Xr,
are C1 manifolds with dim Xi = dim X, i = 1, . . . , r;

b) (Xi ∪ ∂X′) ∩ U are C1 manifolds with boundary.

By Smp(∂X′) we denote the set of simple points of ∂X′.
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1 Definition. Let X ⊂ Rn be a subanalytic set such that
0 ∈ X. We define kX : Smp(∂X′)→ N, by letting kX(x) be
the number of connected components of the germ
(β−1

n (X \ {0}), x).

2 Remark. It is clear that the function kX is locally constant.
In fact, kX is constant in each connected component Cj of
Smp(∂X′). Then, we define kX(Cj) := kX(x) with x ∈ Cj.
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1 Definition. Let X ⊂ Rn be a real analytic set. We denote
by C′X the closure of the union of all connected
components Cj of Smp(∂X′) such that kX(Cj) is an odd
number. We call C′X the odd part of CX ⊂ Sn.

2 Definition. Let A ⊂ Rn, B ⊂ Rd and C ⊂ A be subanalytic
sets and π : A→ B be a continuous mapping. If
#(π−1(x) ∩ C) is constant mod 2 for a generic x ∈ B, we
define the degree of C with respect to π to be
degπ(C) := #(π−1(x) ∩ C) mod 2, for a generic x ∈ B.

3 Let X ⊂ Rn be a subanalytic set. If degπ(X) is defined and
does not depend on a generic projection π : Rn → Rd, then
we denote degπ(X) just by deg2(X).
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1 If X ⊂ Rn is an algebraic set then deg2(X) is defined and
deg2(X) ≡ deg(X) mod 2. Moreover it coincides with the
topological degree of the projective closure of X.

2 Proposition Valette-Sampaio. Let X ⊂ Rn be a
d-dimensional real analytic set with 0 ∈ X and π : Cn → Cd

be a projection such that π−1(0) ∩ C(XC, 0) = {0}. Let
π′ : Sn−1 \ π−1(0)→ Sd−1 be the mapping given by
π′(u) = π(u)

‖π(u)‖ . Then degπ′(C′X) is defined and satisfies
degπ′(C′X) ≡ m(X, 0) mod 2.
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1 Definition An (n− 1)-dimensional subanalytic set C is said
to be an Euler cycle if it is a closed set and if, for a
stratification of C (and hence for any that refines it), the
number of (n− 1)-dimensional strata containing a given
(n− 2)-dimensional stratum in their closure is even.

2 We say that a set C ⊂ Rn is a-invariant if it is preserved by
the antipodal mapping (i.e. a(C) = C, with a(x) = −x).

3 Rremark Let C ⊂ Sn−1 be an a-invariant Euler cycle. If C′ is
a cone over C, then the projective closure C′ of C′ in Pn(R)
is a Z/(2) homological cycle.
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1 Definition Let M and N be analytic manifolds. Let X ⊂ M
and Y ⊂ N be analytic subsets. We say that a mapping
f : X → Y is arc-analytic if for any analytic arc
γ : (−1, 1)→ X, the mapping f ◦ γ is an analytic arc as well.

2 The Fukui-Kurdyka-Paunescu’s Conjecture Let
(X, 0) ⊂ (Rn, 0), (Y, 0) ⊂ (Rm, 0) be germs of real analytic
sets and let h : (X, 0)→ (Y, 0) be a subanalytic arc-analytic
bi-Lipschitz homeomorphism. Then
m(X, 0) ≡ m(Y, 0) mod 2.
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1 Proof.
2 By previous Sampaio results we can assume that C′X 6= ∅.
3 The degree of C′X with respect to π′, degπ′(C′X), is well

defined and degπ′(C′X) ≡ m(X, 0) mod 2, where
π = p|Rn : Rn → Rd and π′ : Sn−1 \ π−1(0)→ Sd−1 is given
by π′(u) = π(u)

‖π(u)‖ .

4 C′X is a-invariant and it is an Euler cycle.
5 If C′(X, 0) is the cone over C′X, then the topological degree

of C′(X, 0) is well defined and

deg(C′(X, 0)) ≡ degπ′(C′X) ≡ m(X, 0) mod 2.
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1 The mapping ψ = d0h|C′(X,0) : C′(X, 0)→ C′(Y, 0) is a
bi-Lipschitz homeomorphism with R−homogenous
d∞ψ = ψ hence by Corollary 3 we have deg C′(X, 0) = deg
C′(Y, 0), i.e., m(X, 0) = m(Y, 0).

2 Remark. Our Theorem proves even more than stated in
Fukui-Kurdyka-Paunescu’s Conjecture, since we do not
require that the sets X and Y have to be irreducible or that
h has to be defined on a neighbourhood of 0 ∈ Rn.
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1 Theorem Let (X, 0) ⊂ (Cn, 0), (Y, 0) ⊂ (Cm, 0) be germs of
complex analytic sets and let h : (X, 0)→ (Y, 0) be a germ
of homeomorphism which is also semi-bi-Lipschitz at 0.
Assume that the graph of h is a complex analytic set. Then
m(X, 0) = m(Y, 0).

2 Theorem. Let (X, 0) ⊂ (Cn, 0), (Y, 0) ⊂ (Cm, 0) be germs of
analytic sets and let h : (X, 0)→ (Y, 0) be a subanalytic
bi-Lipschitz homeomorphism. If d0h is a C− homogenous
mapping, then m(X, 0) = m(Y, 0).
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1 We cannot expect invariance of multiplicity without mod 2
in Fukui-Kurdyka-Paunescu’s Conjecture:

2 Example. Consider X = {(x, y, z) ∈ R3; z(x2 + y2) = y3} and
Y = {(x, y, z) ∈ R3; z(x4 + y4) = y5}. Let h : (R3, 0)→ (R3, 0)
be the mapping given by

h(x, y, z) =

{ (
x, y, z− y3

x2+y2 + y5

x4+y4

)
if x2 + y2 6= 0

(0, 0, z) if x2 + y2 = 0.

Then X and Y are irreducible real analytic sets such that
m(X, 0) = 3 and m(Y, 0) = 5. Moreover, h is a
semialgebraic arc-analytic bi-Lipschitz homeomorphism
such that h(X) = Y.
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