Łojasiewicz exponent of rational singularities and ideals

in their local ring

MERAL TOSUN

Galatasaray Üniversity

joint work with Emel Bilgin and Gulay Kaya

Gdansk-Kraków-Łódź-Warszawa Seminar in Singularity Theory

November 26, 2021

Galatasaray Üniversity

Łojasiewicz Inequality

Theorem (Stanislaw Łojasiewicz, 1958)

Let $U \subset \mathbb{R}^N$ be an open set.

Let $F : U \longrightarrow \mathbb{R}$ be a real analytic function.

Assume that $V(F) \neq \emptyset$.

Then, for any compact set K in U there exist $\alpha > 1$ and a constant c > 0 such that

$$inf_{z\in V(F)} \mid p-\mathbf{z} \mid^{\alpha} \leq c \cdot \mid F(p) \mid$$

for all $p \in K$.

Łojasiewicz Gradient Inequality

Theorem (Stanislaw Łojasiewicz, 1963)

Let $U \subset \mathbb{R}^N$ be an open set.

Let $F : U \longrightarrow \mathbb{R}$ be a real analytic function.

Assume that $V(F) \neq \emptyset$.

Then, for every $p \in U$ there exists a neighborhood U' of p and constants $\beta, c > 0$ such that

 $\mid F(\mathbf{z}) - F(p) \mid^{\beta} \leq c \cdot \mid \nabla F(\mathbf{z}) \mid$

for all $\mathbf{z} \in U'$.

Łojasiewicz Gradient Inequality

Theorem (Stanislaw Łojasiewicz, 1963)

Let $U \subset \mathbb{R}^N$ be an open set.

Let $F : U \longrightarrow \mathbb{R}$ be a real analytic function.

Assume that $V(F) \neq \emptyset$.

Then, for every $p \in U$ there exists a neighborhood U' of p and constants $\beta, c > 0$ such that

 $\mid F(\mathbf{z}) - F(p) \mid^{\beta} \leq c \cdot \mid \nabla F(\mathbf{z}) \mid$

for all $\mathbf{z} \in U'$.

Remark

The first inequality implies the second inequality.

Łojasiewicz Inequalities

The aim is to find the smallest possible exponents α, β, θ such that

 $\mid f(\mathbf{x}) \mid \geq c \cdot \mid \mathbf{x} \mid^{lpha}$

 $ert
abla f(\mathbf{x}) ert \geq c \cdot ert \, \mathbf{x} ert^eta$ $ert \,
abla f(\mathbf{x}) ert \geq c \cdot ert \, f(\mathbf{x}) ert^ heta$

for an analytic function f defined in a neighborhood of 0 in k^n such that $f^{-1}(0) = 0$.

Łojasiewicz Inequality

Theorem (B. Teissier, 1977)

We have $\theta = \frac{\beta}{\beta+1}$.

M. Tosun

- * ロ > * @ > * 注 > * 注 > … 注 … のへ(

Galatasaray Üniversity

Łojasiewicz Inequality

Theorem (J. Gwodziewicz, 1999)

We have:

 $\alpha=\beta+1\text{,}$

$$\theta = \frac{\beta}{\alpha}$$
,

M. Tosun

 $\beta = N + \frac{a}{b}$ where $0 < a < b < N^{n-1}$.

In complex case

Łojasiewicz Exponent

Let $f(\mathbf{z}) = f(z_1, \ldots, z_N) \in \mathbb{C}\{z_1, \ldots, z_N\}$ with f(0) = 0.

Then there exists a neighborhood U of 0 in \mathbb{C}^N and constants $\theta, c > 0$ such that

 $\mid \mathbf{z} \mid^{ heta} \leq c \cdot \mid
abla f(\mathbf{z}) \mid$

for all $\mathbf{z} \in U$.

The infimum of all possible θ is called the Łojasiewicz exponent $\mathcal{L}_0(f)$ of f.

Let $f : \mathbb{C}^N \to \mathbb{C}$ be an analytic function germ.

Consider the hypersurface

$$X:=\{(z_1,\ldots,z_N)\in\mathbb{C}^N\mid f(z_1,\ldots,z_N)=0\}$$

with an isolated singularity at the origin.

Definition

M. Tosun

The Łojasiewicz exponent $\mathcal{L}_0(X)$ of X is the Łojasiewicz exponent $\mathcal{L}_0(f)$.

Question Is $\mathcal{L}_0(X)$ a topological invariant?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のの(

Galatasaray Üniversity

Łojasiewicz exponent of rational singularities and ideals in their local ring

Question

Is $\mathcal{L}_0(X)$ a topological invariant?

Question

M. Tosun

Find a formula to compute $\mathcal{L}_0(X)$ using other invariants of X?

Galatasaray Üniversity

Question

Is $\mathcal{L}_0(X)$ a topological invariant?

Question

Find a formula to compute $\mathcal{L}_0(X)$ using other invariants of X?

Question

What is the best estimation of $\mathcal{L}_0(X)$ for a given X?

Question

Is $\mathcal{L}_0(X)$ a topological invariant?

Question

Find a formula to compute $\mathcal{L}_0(X)$ using other invariants of X?

Question

What is the best estimation of $\mathcal{L}_0(X)$ for a given X?

Question

Is there any relation between the multiplicity $m_0(X)$ and $\mathcal{L}_0(X)$ for a given X?

Theorem (A. Ploski, 1990)

Let $C := \{(z_1, z_2) \mid f(z_1, z_2) = 0\} \subset \mathbb{C}^2$.

Consider

M. Tosun

$$f'_{z_1} = \frac{\partial F}{\partial z_1} = g_1 \cdots g_r, \quad f'_{z_2} = \frac{\partial F}{\partial z_2} = h_1 \cdots h_s$$

where g_i and h_j are irreducible for each i, j.

Then the Lojasiewicz exponent of the curve C is given by

$$\mathcal{L}_0(C) = \max_{i,j} \left\{ \frac{(f'_{z_1}, h_i)_0}{ord(h_i)}, \frac{(f'_{z_2}, g_j)_0}{ord(g_j)} \right\}.$$

Here $(f, g)_0$ denotes the intersection multiplicity at the origin.

Theorem (T.Krasinski, G.Oleksik, A.Ploski, 2009)

Let f be a weighted homogeneous polynomial with an isolated singularity at 0 with weights

 (w_1,\ldots,w_N) and degree d.

Assume that $d \ge 2w_i$ for all *i*.

Then

M. Tosun

$$\mathcal{L}_0(X) = \frac{d - \min\{w_i\}}{\min\{w_i\}}$$

Without the assumption $d \ge 2w_i$, we have:

$$\mathcal{L}_0(X) = min\Big\{\prod_{i=1}^3 (rac{d}{w_i}-1), rac{d-min\{w_i\}}{min\{w_i\}}\Big\}$$

Example - $\mathcal{L}_0(X)$ of **ADE**-singularities

Singularity $(X, 0)$	(w_1, w_2, w_3)	d	$\mathcal{L}_0(X)$
$A_{2k}: z_3^2 + z_2^2 + z_1^{n+1} = 0$	(2, 2k + 1, 2k + 1)	4 <i>k</i> + 2	n
$A_{2k+1}: z_3^2 + z_2^2 + z_1^{n+1} = 0$	(1, k + 1, k + 1)	2k + 2	n
$D_n: z_3^2 + z_1 z_2^2 + z_1^{n-1} = 0$	(2, n-2, n-1)	2(n-1)	<i>n</i> – 2
$E_6: \ z_3^2 + z_2^3 + z_1^4 = 0$	(3, 4, 6)	12	3
$E_7: \ z_3^2 + z_2^3 + z_1^3 z_2 = 0$	(4, 6, 9)	18	$\frac{7}{2}$
$E_8: \ z_3^2 + z_2^3 + z_1^5 = 0$	(6, 10, 15)	30	4

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目: のへぐ

M. Tosun

Łojasiewicz Exponent of a Surface

Remark

M. Tosun

We can define the Łojasiewicz exponent $\mathcal{L}_0(f)$ of any holomorphic map

$$F:(\mathbb{C}^N,0) o(\mathbb{C}^m,0)$$

having an isolated zero at the origin.

・ロト・日本・モト・モー うんの

Galatasaray Üniversity

Rational Singularities of Surfaces

Definition

M. Tosun

Let $X \subset \mathbb{C}^N$ be a surface with an isolated singularity at the origin.

Let $\pi : (\tilde{X}, E) \to (X, 0)$ be a resolution of (X, 0).

Let $\pi^{-1}(0) := \bigcup E_i$ be the exceptional curve.

(X, 0) is a rational singularity if $H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}) = 0$.

・ロト・白マ・山マ・山マ・山

Local Ring of a Rational Singularity

Let $g \in \mathcal{O}_{X,0}$.

We have $\pi^*(g) = D_g + T_g$ where $D_g = \sum_{i=1}^n \nu_{E_i}(g)E_i$ and T_g is the strict

transform of f by π .

Let $\mathcal{S}(\pi)$ be the set of such positive divisors D_g .

partial ordering

M. Tosun

・ロト・(部)ト・モト・モト・モー・クタ(

Galatasaray Üniversity

Rational Singularities of Surfaces

Theorem (M.Artin, 1964)

Let X := (X, 0) be a surface with a rational singularity at 0 in \mathbb{C}^N .

Let Z be the Artin cycle of π . Then $mult_0(X) = -(Z \cdot Z)$.

Galatasaray Üniversity

Local Ring of a Rational Singularity

Let $\mathcal{S}(\mathbf{I})$ be the set of \mathcal{M} -primary integrally closed ideals I in $\mathcal{O}_{X,0}$ such that

 $I\mathcal{O}_{\tilde{X}}$ is invertible.

Theorem (J.Lipman, 1969)

The product of integrally closed ideals in $\mathcal{O}_{X,0}$ is integrally closed.

Corollary

The set $\mathcal{S}(\mathbf{I})$ is a semigroup with respect to the product.

Local Ring of a Rational Singularity

Theorem (J.Lipman, 1969)

For a rational singularity, we have a 1-1 correspondence between $\mathcal{S}(\mathbf{I})$ and $\mathcal{S}(\pi)$.

Galatasaray Üniversity

Łojasiewicz exponent of rational singularities and ideals in their local ring

Definition

Let $X \subset \mathbb{C}^N$ be a germ of surface with an isolated singularity at 0.

Let $I = \langle f_1, \ldots, f_k \rangle \subset \mathcal{O}_{X,0}$ and $g \in \mathcal{O}_{X,0}$ with $g \in \sqrt{I}$.

If there is an open neighbourhood U of 0 in X and $c \in \mathbb{R}_+$ with

$$\mid g(z) \mid^{ heta} \leq c \cdot \sup_{i=1,...,k} \mid f_i(z) \mid, \quad \forall z \in U$$

then the greatest lower bound of θ 's is called the Łojasiewicz exponent of g w.r.t. I.

We denote it by $\mathcal{L}_{l}(g)$.

This definition does not depend on the generators of I.

Theorem (B. Teissier, M. Lejeune-Jalabert, 1974)

Let $I = \langle f_1, \ldots, f_k \rangle \subset \mathcal{O}_{X,0}$ and $g \in \mathcal{O}_{X,0}$ with $g \in \sqrt{I}$.

Let $\nu_{E_i}(g)$ be the vanishing order of $g \circ \pi$ along E_i , the largest integer p such that $g \in I^p$.

$$\mathcal{L}_{I}(g) = max_{i=1}^{k} \{ rac{
u_{E_{i}}(I)}{
u_{E_{i}}(g)} \}$$

Theorem (B. Teissier, M. Lejeune-Jalabert, 1974)

Let $I = \langle f_1, \ldots, f_k \rangle \subset \mathcal{O}_{X,0}$ and $g \in \mathcal{O}_{X,0}$ with $g \in \sqrt{I}$.

Let $\nu_{E_i}(g)$ be the vanishing order of $g \circ \pi$ along E_i , the largest integer p such that $g \in I^p$.

$$\mathcal{L}_{I}(g) = max_{i=1}^{k} \{ rac{
u_{E_{i}}(I)}{
u_{E_{i}}(g)} \}$$

Corollary

 $\mathcal{L}_{l}(g) \in \mathbb{Q}_{+}.$

More generally:

Definition

M. Tosun

Let I, J be two ideals in $\mathcal{O}_{X,0}$ with $J \subset \sqrt{I}$.

The Łojasiewicz exponent of the ideal $J = < h_1, \ldots, h_r > \subset \mathcal{O}_{X,0}$ with respect to I is

$$\mathcal{L}_{I}(J) = max_{i=1,...,r}\mathcal{L}_{I}(h_{i})$$

・ロト・日本・ヨト・ヨー うん(

Theorem (B. Teissier, M. Lejeune-Jalabert, 1974)

Let $X \subset \mathbb{C}^N$ be a germ of surface with an isolated singularity at 0.

Let $I, J \subset \mathcal{O}_{X,0}$ be two ideals.

Then

$$\mathcal{L}_{I}(J) = inf\{\frac{a}{b} \mid a, b \in \mathbb{N}^{*}, I^{a} \subseteq \overline{J^{b}}\}$$

Galatasaray Üniversity

Local Ring of a Rational Singularity

Definition

Let $I \in \mathcal{S}(\mathbf{I})$. An element $f \in I$ is called generic for I if

 $\nu_{E_i}(f) \leq \nu_{E_i}(h)$

for all $h \in I$.

M. Tosun

<ロ> < 団> < 団> < 三> < 三> < 三</p>

Galatasaray Üniversity

Proposition

Let $I \in \mathcal{S}(\mathbf{I})$ and g be the generic element of I.

Let *Z* be the Artin divisor of π .

Then

M. Tosun

$$\mathcal{L}_{\mathcal{M}}(I) = max\{rac{a}{b} \mid a \cdot Z \geq b \cdot D_{g} \text{ with } a, b \in \mathbb{N}^{*}\}$$

where g is the generic element of I and \mathcal{M} is the maximal ideal in $\mathcal{O}_{X,0}$.

Proposition

Let $I \in \mathcal{S}(\mathbf{I})$.

The Łojasiewicz exponent $\mathcal{L}_0(I)$ is given by

$$\mathcal{L}_0(I) := \max_{i=1}^n \left\{ rac{
u_{E_i}(D_I)}{
u_{E_i}(Z)}
ight\}$$

In particular, we have $\mathcal{L}_0(\mathcal{M}) = 1$.

・ロト・西ト・西ト・西ト・日・ シック

\mathbb{Q} -gen. of E_6	ℓ(I)	$\mathcal{L}_0(I)$	\mathbb{Q} -gen. of E_7	ℓ(I)	$\mathcal{L}_0(I)$	\mathbb{Q} -gen. of E_8	<i>ℓ(I)</i>	$\mathcal{L}_0(I)$
(1,2,3,2,1,2)*	1	1	(2,3,4,3,2,1,2)*	1	1	(2,4,6,5,4,3,2,3)*	1	1
(2,3,4,3,2,2)	2	2	(2,4,6,5,4,2,3)*	2	2	(4,7,10,8,6,4,2,5)*	2	2
(2, 4, 6, 4, 2, 3)*	3	2	(2,4,6,5,4,3,3)*	3	3/2	(4,8,12,10,8,6,3,6)*	3	2
(4, 5, 6, 4, 2, 3)*	6	4	(3, 6, 8, 6, 4, 2, 4)*	3	2	(3, 6, 9, 12, 15, 10, 5, 8)*	4	8/3
(2, 4, 6, 5, 4, 3)*	6	4	(3, 6, 9, 7, 5, 3, 5)	4	3	(6, 12, 18, 15, 12, 8, 4, 9)*	6	3
(5,10,12,8,4,6)*	15	5	(4, 8, 12, 9, 6, 3, 6)*	6	3	(7, 14, 20, 16, 12, 8, 4, 10)*	7	7/2
(4, 8, 12, 10, 5, 6)*	15	5	(4, 8, 12, 9, 6, 3, 7)*	7	7/2	(7, 14, 21, 17, 13, 9, 5, 11)	8	11/3
			(6, 12, 18, 15, 10, 5, 9)*	15	5	(8, 16, 24, 20, 15, 10, 5, 12)*	10	4
						(10, 20, 30, 24, 18, 12, 6, 15)*	15	5

M. Tosun

Recall

M. Tosun

The length of an ideal I in a ring R is the dimension of R/I over k.

- < ロ > < 回 > < 直 > < 直 > 三 の < ()

Galatasaray Üniversity

Theorem

The length of $I \in \mathcal{S}(\mathbf{I})$ is given by

$$\ell(I) = \frac{-(D_I \cdot D_I) - \sum_{i=1}^{n} \nu_{E_i}(D_I)(w_i - 2)}{2}$$

where $w_i = -E_i^2$ for all *i*.

Remark

M. Tosun

For an ideal I with $\ell(I) = p$ we have $\mathcal{M}^p \subseteq I$.

・ロト・日本・日本・日本・日本・日本

Galatasaray Üniversity

\mathbb{Q} -gen. of E_6	ℓ(I)	$\mathcal{L}_0(I)$	\mathbb{Q} -gen. of E_7	<i>ℓ(I)</i>	$\mathcal{L}_0(I)$	\mathbb{Q} -gen. of E_8	ℓ(I)	$\mathcal{L}_0(I)$
(1,2,3,2,1,2)*	1	1	(2,3,4,3,2,1,2)*	1	1	(2, 4, 6, 5, 4, 3, 2, 3)*	1	1
(2, 3, 4, 3, 2, 2)	2	2	(2,4,6,5,4,2,3)*	2	2	(4,7,10,8,6,4,2,5)*	2	2
$D_{p} = (2, 4, 6, 4, 2, 3)*$	3	2	$D_p = (2, 4, 6, 5, 4, 3, 3)*$	3	3/2	(4, 8, 12, 10, 8, 6, 3, 6)*	3	2
(4,5,6,4,2,3)*	6	4	(3, 6, 8, 6, 4, 2, 4)*	3	2	$D_p = (3, 6, 9, 12, 15, 10, 5, 8)*$	4	8/3
(2,4,6,5,4,3)*	6	4	(3, 6, 9, 7, 5, 3, 5)	4	3	(6, 12, 18, 15, 12, 8, 4, 9)*	6	3
(5, 10, 12, 8, 4, 6)*	15	5	(4, 8, 12, 9, 6, 3, 6)*	6	3	(7, 14, 20, 16, 12, 8, 4, 10)*	7	7/2
(4, 8, 12, 10, 5, 6)*	15	5	(4, 8, 12, 9, 6, 3, 7)*	7	7/2	(7, 14, 21, 17, 13, 9, 5, 11)	8	11/3
			(6, 12, 18, 15, 10, 5, 9)*	15	5	(8, 16, 24, 20, 15, 10, 5, 12)*	10	4
						(10, 20, 30, 24, 18, 12, 6, 15)*	15	5

M. Tosun

Observations

Let X be a surface with an ADE-type singularity. Then

 $\mathcal{L}_0(X) \leq m_0(X) + \mathcal{L}_0(D_p) \leq \ell(D_p) + 1$

where D_p is a special divisor in $S(\pi)$.

 $m_0(X) < \mathcal{L}_0(X) \leq \tau(X)$

where
$$\tau(X)$$
 equals $dim(\frac{\mathcal{O}_{\mathbb{C}^{N},0}}{\langle f,J(f) \rangle})$, called the Tjurina number of X.

Rational Singularities of Surfaces

Theorem (M.Artin, 1964)

Let X := (X, 0) be a surface with a rational singularity at 0 in \mathbb{C}^N .

Let Z be the Artin cycle of π . Then

(*i*) $p_a(Z) = 0$

M. Tosun

(ii) $mult_0(X) = -(Z \cdot Z)$

(iii) emb.dim. $(X) = -(Z \cdot Z) + 1$

・ロト・日本・モート・ロークへの

Rational Singularities of Surfaces

Corollary

M. Tosun

A rational singularity $(X, 0) \subset (\mathbb{C}^N, 0)$ has multiplicity N - 1 and is defined by

$$k := rac{(N-1)(N-2)}{2}$$
 equations.

Galatasaray Üniversity

Tjurina equations

RTP	Tjurina's equations	RTP	Tjurina's equations
$A_{k-1,\ell-1,m-1}$	$xw - y^m w - y^{\ell+m} = 0$	$C_{k-1,\ell+1}$	$xz - y^k w = 0$
$k,\ell,m\geq 1$	$zw + y^{\ell}z - y^{k}w = 0$	$k\geq 1$, $\ell\geq 2$	$w^2 - x^{\ell+1} - xy^2 = 0$
	$xz - y^{m+k} = 0$		$zw - x^{\ell}y^k - y^{k+2} = 0$
$B_{k-1,n}$	$xz - y^{k+\ell} - y^k w = 0$	$B_{k-1,n}$	$xz - y^k w = 0$
$n=2\ell>3$	$w^2 + y^\ell w - x^2 y = 0$	$n=2\ell-1\geq 3$	$zw - xy^{k+1} - y^{k+\ell} = 0$
	$zw - xy^{k+1} = 0$		$w^2 - x^2y - xy^\ell = 0$
D_{k-1}	$xz - y^{k+2} - y^k w = 0$	F_{k-1}	$xz - y^k w = 0$
$k \geq 1$	$zw - x^2 y^k = 0$	$k \ge 1$	$zw - x^2y^k - y^{k+3} = 0$
	$w^2 + y^2 w - x^3 = 0$		$w^2 - x^3 - xy^3 = 0$
H _n	$z^2 - xw = 0$	H_n	$z^2 - xy^{k+1} - xyw = 0$
n = 3k	$zw + y^k z - x^2 y = 0$	n=3k+1	$zw - x^2y = 0$
	$w^2 + y^k w - xyz = 0$		$w^2 + y^k w - xz = 0$
H _n	$z^2 - xw = 0$		
n = 3k - 1	$zw - x^2y - xy^k = 0$		
	$w^2 - y^k z - xyz = 0$		
E _{6,0}	$z^2 - yw = 0$		
	$zw + y^2 z - x^2 y = 0$		
	$w^2 + y^2 w - x^2 z = 0$		
E _{0,7}	$z^2 - yw = 0$		
	$zw - x^2y - y^4 = 0$		
	$w^2 - x^2 z - y^3 z = 0$		
E _{7,0}	$z^2 - yw = 0$		
	$zw + x^2z - y^3 = 0$		
	$w^2 + x^2w - y^2z = 0$		

M. Tosun

Consider the analytic map germs $f_i : \mathbb{C}^N \to \mathbb{C}$ so that

$$F = (f_1, f_2, \ldots, f_k) : \mathbb{C}^N \to \mathbb{C}^k$$

defines the rational singularity (X, 0).

The Łojasiewicz exponent $\mathcal{L}_0(F)$ of F at the origin in \mathbb{C}^N is the infimum of the set of all real

numbers $\theta > 0$ such that there exists a positive constant c such that

$$c \|z\|^{ heta} \leq \|F(z)\|$$
 as $\|z\| << 1$

Quasi-Homogeneous Ideals

Definition

A map $F = (f_1, \ldots, f_k) : \mathbb{C}^N \longrightarrow \mathbb{C}^k$ is called quasi-homogeneous if

$$f_i(\lambda^{w_1}z_1,\lambda^{w_2}z_2,\ldots,\lambda^{w_N}z_N)=\lambda^{d_i}f_i(z_1,z_2,\ldots,z_N)$$

where

M. Tosun

$$w = (w_1, \ldots, w_N) \in (\mathbb{R}_+ - \{0\})^N$$
 and $d = (d_1, \ldots, d_k) \in (\mathbb{R}_+ - \{0\})^k$.

・ロ・・一時・・川市・ 小田・ うんの

Quasi-Homogeneous Ideals

Definition

A map $F = (f_1, \ldots, f_k) : \mathbb{C}^N \longrightarrow \mathbb{C}^k$ is called quasi-homogeneous if

$$f_i(\lambda^{w_1}z_1,\lambda^{w_2}z_2,\ldots,\lambda^{w_N}z_N)=\lambda^{d_i}f_i(z_1,z_2,\ldots,z_N)$$

where

$$w = (w_1, \ldots, w_N) \in (\mathbb{R}_+ - \{0\})^N$$
 and $d = (d_1, \ldots, d_k) \in (\mathbb{R}_+ - \{0\})^k$.

Remark

The RTP-singularities are quasi-homogeneous.

(日) (四) (日) (日) (日)

Łojasiewicz Exponent of Quasi-Homogeneous Ideal

Theorem (A.Haraux and T.S.Pham, 2015)

 $F = (f_1, \ldots, f_k) : \mathbb{C}^N \longrightarrow \mathbb{C}^k$ be a quasi-homogeneous map germ with the

weight $w = (w_1, \ldots, w_N) \in \mathbb{Z}_{>0}^N$ and the quasi-degree $d = (d_1, \ldots, d_k) \in \mathbb{Z}_{>0}^k$. Assume that $F^{-1}(0) = \{0\}$. Then

$$\frac{\min\{d_1,\ldots,d_k\}}{\min\{w_1,\ldots,w_N\}} \leq \mathcal{L}_0(F) \leq \frac{\max\{d_1,\ldots,d_k\}}{\min\{w_1,\ldots,w_N\}}$$

Łojasiewicz exponent of rational singularities and ideals in their local ring

M. Tosun

RTP-Singularities as Quasi-homogeneous Functions

RTP	weights	$min\{d\}$	max{ d }
$A_{k,\ell,m}$	$(m,1,k,\ell)$	2 <i>m</i>	$2k + \ell - 1$
$B_{k-1,2\ell}$	$(2\ell - 1, 2, 2k + 1, 2\ell)$ for $l \ge k + 1$,	4ℓ or $2k\ell+2\ell-1$	4ℓ or $2k\ell+2\ell+1$
	$(k + 1, 2, k + \ell, 2\ell)$ for $l < k + 1$		
$B_{k-1,2\ell-1}$	$(2\ell - 2, 2, 2k + 1, 2\ell - 1)$	$2k + 2\ell - 1$ or $4\ell - 2$	$4\ell-2 ext{ or } 2k+2\ell$
$C_{k-1,\ell+1}$	$(2,\ell,k.\ell+\ell-2,\ell+1)$	$2\ell+2$ or $k\ell+\ell^2$	$k.\ell + \ell + 1$
D_{k-1}	(4, 3, 3k + 2, 6)	9,12 $k \ge 2$	12,18, $3k + 8 \ k \ge 3$
F_{k-1}	(6, 4, 4k + 3, 9)	13,17,18 $k \ge 3$	18,4k+12 $k \ge 2$
H_{3k-1}	(3k-3,3,3k-2,3k-1)	6k-4	6k-2
H _{3k}	(3k-2,3,3k-1,3k)	6k-2	6k
H_{3k+1}	(3k-1,3,3k+1,3k)	6k	6k+2
E _{6,0}	(5,4,6,8)	12	16
E _{0,7}	(9, 6, 10, 14)	18	28
E _{7,0}	(5, 6, 8, 10)	16	20

- イロト イヨト イヨト - ヨー - のへ(

Galatasaray Üniversity

M. Tosun

Let $F = (f_1, f_2, \ldots, f_k) : \mathbb{C}^N \to \mathbb{C}^k$ defines the rational singularity (X, 0).

Let g_1, \ldots, g_s be the 2 × 2 minors of $\left(\frac{\partial f_i}{\partial z_i}\right)$ where $s := \binom{N}{2}\binom{k}{2}$.

Consider $F = (f_1, \ldots, f_k, g_1, \ldots, g_s) : \mathbb{C}^N \to \mathbb{C}^{k+s}$.

The Łojasiewicz exponent $\mathcal{L}_0(F)$ of F at the origin in \mathbb{C}^N is the infimum of the set of all real

numbers $\theta > 0$ such that there exists a positive constant c such that

 $\|c\|\|^{ heta} \leq \|F(z)\|$ as $\|z\| << 1$

RTP-Singularities as Quasi-homogeneous Functions

RTP	weights	$min\{d\}$	$max\{\mathbf{d}\}$	ℓ(Jac)
$A_{k,\ell,m}$	$(m,1,k,\ell)$	2 <i>m</i>	$2k + \ell - 1$	$k + \ell + m + 5$
$B_{k-1,2\ell}$	$(2\ell - 1, 2, 2k + 1, 2\ell)$ for $l \ge k + 1$, $(k + 1, 2, k + \ell, 2\ell)$ for $l < k + 1$	4 <i>k</i> + 2	6ℓ – 3	$3k+2l+3$ for $l \ge k+1$, k+4l+2 for $l < k+1$
$B_{k-1,2\ell-1}$	$(2\ell - 2, 2, 2k + 1, 2\ell - 1)$	4 <i>k</i> + 2	6ℓ – 3	$k + 4\ell$ for $l \le k + 1$, $3k + 2\ell + 2$ for $\ell > k + 1$
$C_{k-1,\ell+1}$	$(2,\ell,k.\ell+\ell-2,\ell+1)$	$k.\ell + \ell - 4$	$\ell + 3$	$k + \ell + 7$
D_{2t-1}	(4, 3, 3k + 2, 6)	10	6 <i>k</i> + 7	k + 11
F_{k-1}	(6, 4, 4k + 3, 9)	15	4 <i>k</i> + 26	k + 14
H_{3k-1}	(3k-3,3,3k-2,3k-1)	6 <i>k</i> – 4	9k – 7	5 <i>k</i> + 2
H _{3k}	(3k-2,3,3k-1,3k)	6 <i>k</i> – 2	9 <i>k</i> – 4	5 <i>k</i> + 3
H_{3k+1}	(3k-1, 3, 3k+1, 3k)	6 <i>k</i>	9 <i>k</i> – 1	5k + 5
E _{6,0}	(5,4,6,8)	12	21	13
E _{0,7}	(9, 6, 10, 14)	20	37	14
E _{7,0}	(5, 6, 8, 10)	16	27	14

• □ > • @ > • ≥ > • ≥ > ≥ • ⊃ ۹۵ Galatasaray Üniversity

M. Tosun

Conjecture

M. Tosun

Let X be a surface with a rational singularity. Then

 $\mathcal{L}_0(X) \leq \mathcal{L}_0(Jac) + m_0(X) \leq \ell(Jac) + 1$

Galatasaray Üniversity

Proposition

M. Tosun

Let G_1, \ldots, G_n be the \mathbb{Q} -generators in $\mathcal{S}(\pi)$.

$$\mathcal{L}_0(X) \leq \min_{i=1}^n \{k \in \mathbb{Q}_{>0} \mid G_i \leq k \cdot Z, \forall i = 1, \dots, r\}$$

・ロト・日本・モト・モト・ ヨー うくの

Galatasaray Üniversity

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Galatasaray Üniversity

Łojasiewicz exponent of rational singularities and ideals in their local ring

M. Tosun

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Galatasaray Üniversity

Łojasiewicz exponent of rational singularities and ideals in their local ring

M. Tosun