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 Lojasiewicz Inequality

Theorem (Stanislaw  Lojasiewicz, 1958)

Let U ⊂ RN be an open set.

Let F : U −→ R be a real analytic function.

Assume that V (F ) 6= ∅.

Then, for any compact set K in U there exist α > 1 and a constant c > 0 such that

infz∈V (F ) | p − z |α≤ c· | F (p) |

for all p ∈ K .
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 Lojasiewicz Gradient Inequality

Theorem (Stanislaw  Lojasiewicz, 1963)

Let U ⊂ RN be an open set.

Let F : U −→ R be a real analytic function.

Assume that V (F ) 6= ∅.

Then, for every p ∈ U there exists a neighborhood U ′ of p and constants β, c > 0 such that

| F (z)− F (p) |β≤ c· | ∇F (z) |

for all z ∈ U ′.

Remark
The first inequality implies the second inequality.
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 Lojasiewicz Inequalities

The aim is to find the smallest possible exponents α, β, θ such that

| f (x) |≥ c· | x |α

| ∇f (x) |≥ c· | x |β

| ∇f (x) |≥ c· | f (x) |θ

for an analytic function f defined in a neighborhood of 0 in kn.
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 Lojasiewicz Inequality

Theorem (B. Teissier, 1977)

We have θ = β
β+1.
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 Lojasiewicz Inequality

Theorem (J. Gwodziewicz, 1999)
We have:

α = β + 1,

θ = β
α,

β = N + a
b where 0 < a < b < Nn−1.
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In complex case

 Lojasiewicz Exponent
Let f (z) = f (z1, . . . , zN) ∈ C{z1, . . . , zN} with an isolated singularity at the origin.

Then there exists a neighborhood U of 0 in CN and constants θ, c > 0 such that

| z |θ≤ c· | ∇f (z) |

for all z ∈ U .

The infimum of all possible θ is called the  Lojasiewicz exponent L0(f ) of f .
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 Lojasiewicz Exponent of an Hypersurface

Let f : CN → C be an analytic function germ.

Consider the hypersurface

X := {(z1, . . . , zN) ∈ CN | f (z1, . . . , zN) = 0}

with an isolated singularity at the origin.

Definition
The  Lojasiewicz exponent L0(X ) of X is the  Lojasiewicz exponent L0(f ).
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 Lojasiewicz Exponent of an Hypersurface

Question
Is L0(X ) a topological invariant?

Question
Find a formula to compute L0(X ) using other invariants of X ?

Question
What is the best estimation of L0(X ) for a given X ?

Question
Is there any relation between the multiplicity m0(X ) and L0(X ) for a given X ?
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 Lojasiewicz Exponent of an Hypersurface

Theorem (A. Ploski, 1990)

Let C := {(z1, z2) | f (z1, z2) = 0} ⊂ C2.

Consider

f ′z1 =
∂F

∂z1
= g1 · · · gr , f ′z2 =

∂F

∂z2
= h1 · · · hs

where gi and hj are irreducible for each i , j .

Then the  Lojasiewicz exponent of the curve C is given by

L0(C ) = max
i ,j

{
(f ′z1, hi)0

ord(hi)
,

(f ′z2, gj)0

ord(gj)

}
.

Here (f , g)0 denotes the intersection multiplicity at the origin.
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 Lojasiewicz Exponent of an Hypersurface

Theorem (T.Krasinski, G.Oleksik, A.Ploski, 2009)
Let f be a weighted homogeneous polynomial with an isolated singularity at 0 with weights

(w1, . . . ,wN) and degree d .

Assume that d ≥ 2wi for all i .

Then

L0(X ) =
d −min{wi}
min{wi}

Without the assumption d ≥ 2wi , we have:

L0(X ) = min
{ 3∏

i=1

(
d

wi
− 1),

d −min{wi}
min{wi}

}
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Example - L0(X ) of ADE-singularities

Singularity (X , 0) (w1,w2,w3) d L0(X )

A2k : z23 + z22 + zn+1
1 = 0 (2, 2k + 1, 2k + 1) 4k + 2 n

A2k+1: z
2
3 + z22 + zn+1

1 = 0 (1, k + 1, k + 1) 2k + 2 n

Dn: z23 + z1z
2
2 + zn−11 = 0 (2, n − 2, n − 1) 2(n − 1) n − 2

E6: z
2
3 + z32 + z41 = 0 (3, 4, 6) 12 3

E7: z
2
3 + z32 + z31z2 = 0 (4, 6, 9) 18 7

2

E8: z
2
3 + z32 + z51 = 0 (6, 10, 15) 30 4
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 Lojasiewicz Exponent of a Surface

Remark
We can define the  Lojasiewicz exponent L0(f ) of any holomorphic map

F : (CN , 0)→ (Cm, 0)

having an isolated zero at the origin.
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Rational Singularities of Surfaces

Definition
Let X ⊂ CN be a surface with an isolated singularity at the origin.

Let π : (X̃ ,E )→ (X , 0) be a resolution of (X , 0).

Let π−1(0) := ∪Ei be the exceptional curve.

(X , 0) is a rational singularity if H1(X̃ ,O
X̃

) = 0.
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Local Ring of a Rational Singularity

Let g ∈ OX ,0.

We have π∗(g) = Dg + Tg where Dg =
∑n

i=1 νEi(g)Ei and Tg is the strict

transform of f by π.

Let S(π) be the set of such positive divisors Dg .
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 Lojasiewicz Exponent of Rational Singularities

partial ordering
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Rational Singularities of Surfaces

Theorem (M.Artin, 1964)

Let X := (X , 0) be a surface with a rational singularity at 0 in CN .

Let Z be the Artin cycle of π. Then mult0(X ) = −(Z · Z ).
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Local Ring of a Rational Singularity

Let S(I) be the set of M-primary integrally closed ideals I in OX ,0 such that

IO
X̃

is invertible.

Theorem (J.Lipman,1969)
The product of integrally closed ideals in OX ,0 is integrally closed.

Corollary
The set S(I) is a semigroup with respect to the product.
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Local Ring of a Rational Singularity

Theorem (J.Lipman,1969)
For a rational singularity, we have a 1-1 correspondence between S(I) and S(π).
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 Lojasiewicz Exponent of an Ideal

Definition
Let X ⊂ CN be a germ of surface with an isolated singularity at 0.

Let I =< f1, . . . , fk >⊂ OX ,0 and g ∈ OX ,0 with g ∈
√
I .

If there is an open neighbourhood U of 0 in X and c ∈ R+ with

| g(z) |θ≤ c · sup
i=1,...,k

| fi(z) |, ∀z ∈ U

then the greatest lower bound of θ’s is called the  Lojasiewicz exponent of g w.r.t. I .

We denote it by LI (g).

This definition does not depend on the generators of I .
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 Lojasiewicz Exponent of an Ideal

Theorem (B.Teissier, M.Lejeune-Jalabert, 1974)

Let I =< f1, . . . , fk >⊂ OX ,0 and g ∈ OX ,0 with g ∈
√
I .

Let νEi(g) be the vanishing order of g ◦ π along Ei , the largest integer p such that g ∈ I p.

LI (g) = maxki=1{
νEi(I )

νEi(g)
}

Corollary
LI (g) ∈ Q+.
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 Lojasiewicz Exponent of an Ideal
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 Lojasiewicz Exponent of an Ideal

More generally:

Definition

Let I , J be two ideals in OX ,0 with J ⊂
√
I .

The  Lojasiewicz exponent of the ideal J =< h1, . . . , hr >⊂ OX ,0 with respect to I is

LI (J) = maxi=1,...,rLI (hi)
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 Lojasiewicz Exponent of an Ideal

Theorem (B.Teissier, M.Lejeune-Jalabert, 1974)

Let X ⊂ CN be a germ of surface with an isolated singularity at 0.

Let I , J ⊂ OX ,0 be two ideals.

Then

LI (J) = inf {a
b
| a, b ∈ N∗, I a ⊆ Jb}
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Local Ring of a Rational Singularity

Definition
Let I ∈ S(I). An element f ∈ I is called generic for I if

νEi(f ) ≤ νEi(h)

for all h ∈ I .
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 Lojasiewicz Exponent of Rational Singularities

Proposition
Let I ∈ S(I) and g be the generic element of I .

Let Z be the Artin divisor of π.

Then

LM(I ) = max{a
b
| a · Z ≥ b · Dg with a, b ∈ N∗}

where g is the generic element of I and M is the maximal ideal in OX ,0.
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 Lojasiewicz Exponent of Rational Singularities

Proposition
Let I ∈ S(I).

The  Lojasiewicz exponent L0(I ) is given by

L0(I ) :=
n

max
i=1

{
νEi(DI )

νEi(Z )

}
In particular, we have L0(M) = 1.

M. Tosun Galatasaray Üniversity
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 Lojasiewicz Exponent of Rational Singularities

Q-gen. of E6 `(I ) L0(I ) Q-gen. of E7 `(I ) L0(I ) Q-gen. of E8 `(I ) L0(I )

(1, 2, 3, 2, 1, 2)∗ 1 1 (2, 3, 4, 3, 2, 1, 2)∗ 1 1 (2, 4, 6, 5, 4, 3, 2, 3)∗ 1 1

(2, 3, 4, 3, 2, 2) 2 2 (2, 4, 6, 5, 4, 2, 3)∗ 2 2 (4, 7, 10, 8, 6, 4, 2, 5)∗ 2 2

(2, 4, 6, 4, 2, 3)∗ 3 2 (2, 4, 6, 5, 4, 3, 3)∗ 3 3/2 (4, 8, 12, 10, 8, 6, 3, 6)∗ 3 2

(4, 5, 6, 4, 2, 3)∗ 6 4 (3, 6, 8, 6, 4, 2, 4)∗ 3 2 (3, 6, 9, 12, 15, 10, 5, 8)∗ 4 8/3

(2, 4, 6, 5, 4, 3)∗ 6 4 (3, 6, 9, 7, 5, 3, 5) 4 3 (6, 12, 18, 15, 12, 8, 4, 9)∗ 6 3

(5, 10, 12, 8, 4, 6)∗ 15 5 (4, 8, 12, 9, 6, 3, 6)∗ 6 3 (7, 14, 20, 16, 12, 8, 4, 10)∗ 7 7/2

(4, 8, 12, 10, 5, 6)∗ 15 5 (4, 8, 12, 9, 6, 3, 7)∗ 7 7/2 (7, 14, 21, 17, 13, 9, 5, 11) 8 11/3

(6, 12, 18, 15, 10, 5, 9)∗ 15 5 (8, 16, 24, 20, 15, 10, 5, 12)∗ 10 4

(10, 20, 30, 24, 18, 12, 6, 15)∗ 15 5
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 Lojasiewicz Exponent of Rational Singularities

Recall
The length of an ideal I in a ring R is the dimension of R/I over k .
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 Lojasiewicz Exponent of Rational Singularities

Theorem
The length of I ∈ S(I) is given by

`(I ) =
−(DI · DI )−

∑n
i=1 νEi(DI )(wi − 2)

2

where wi = −E 2
i for all i .

Remark
For an ideal I with `(I ) = p we have Mp ⊆ I .
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 Lojasiewicz Exponent of Rational Singularities

Q-gen. of E6 `(I ) L0(I ) Q-gen. of E7 `(I ) L0(I ) Q-gen. of E8 `(I ) L0(I )

(1, 2, 3, 2, 1, 2)∗ 1 1 (2, 3, 4, 3, 2, 1, 2)∗ 1 1 (2, 4, 6, 5, 4, 3, 2, 3)∗ 1 1

(2, 3, 4, 3, 2, 2) 2 2 (2, 4, 6, 5, 4, 2, 3)∗ 2 2 (4, 7, 10, 8, 6, 4, 2, 5)∗ 2 2

Dp = (2, 4, 6, 4, 2, 3)∗ 3 2 Dp = (2, 4, 6, 5, 4, 3, 3)∗ 3 3/2 (4, 8, 12, 10, 8, 6, 3, 6)∗ 3 2

(4, 5, 6, 4, 2, 3)∗ 6 4 (3, 6, 8, 6, 4, 2, 4)∗ 3 2 Dp = (3, 6, 9, 12, 15, 10, 5, 8)∗ 4 8/3

(2, 4, 6, 5, 4, 3)∗ 6 4 (3, 6, 9, 7, 5, 3, 5) 4 3 (6, 12, 18, 15, 12, 8, 4, 9)∗ 6 3

(5, 10, 12, 8, 4, 6)∗ 15 5 (4, 8, 12, 9, 6, 3, 6)∗ 6 3 (7, 14, 20, 16, 12, 8, 4, 10)∗ 7 7/2

(4, 8, 12, 10, 5, 6)∗ 15 5 (4, 8, 12, 9, 6, 3, 7)∗ 7 7/2 (7, 14, 21, 17, 13, 9, 5, 11) 8 11/3

(6, 12, 18, 15, 10, 5, 9)∗ 15 5 (8, 16, 24, 20, 15, 10, 5, 12)∗ 10 4

(10, 20, 30, 24, 18, 12, 6, 15)∗ 15 5
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 Lojasiewicz Exponent of Rational Singularities

Observations
Let X be a surface with an ADE-type singularity. Then

L0(X ) ≤ m0(X ) · L0(Dp)

where Dp is a special divisor in S(π).
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Rational Singularities of Surfaces

Theorem (M.Artin, 1964)

Let X := (X , 0) be a surface with a rational singularity at 0 in CN .

Let Z be the Artin cycle of π. Then

(i) pa(Z ) = 0

(ii) mult0(X ) = −(Z · Z )

(iii) emb.dim.(X ) = −(Z · Z ) + 1
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Rational Singularities of Surfaces

Corollary

A rational singularity (X , 0) ⊂ (CN , 0) has multiplicity N − 1 and is defined by

k :=
(N − 1)(N − 2)

2
equations.
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Tjurina equations

RTP Tjurina’s equations RTP Tjurina’s equations
Ak−1,`−1,m−1 xw − ymw − y `+m = 0 Ck−1,`+1 xz − ykw = 0
k, `,m ≥ 1 zw + y `z − ykw = 0 k ≥ 1, ` ≥ 2 w2 − x`+1 − xy2 = 0

xz − ym+k = 0 zw − x`yk − yk+2 = 0
Bk−1,n xz − yk+` − ykw = 0 Bk−1,n xz − ykw = 0
n = 2` > 3 w2 + y `w − x2y = 0 n = 2`− 1 ≥ 3 zw − xyk+1 − yk+` = 0

zw − xyk+1 = 0 w2 − x2y − xy ` = 0
Dk−1 xz − yk+2 − ykw = 0 Fk−1 xz − ykw = 0
k ≥ 1 zw − x2yk = 0 k ≥ 1 zw − x2yk − yk+3 = 0

w2 + y2w − x3 = 0 w2 − x3 − xy3 = 0
Hn z2 − xw = 0 Hn z2 − xyk+1 − xyw = 0
n = 3k zw + ykz − x2y = 0 n = 3k + 1 zw − x2y = 0

w2 + ykw − xyz = 0 w2 + ykw − xz = 0
Hn z2 − xw = 0
n = 3k − 1 zw − x2y − xyk = 0

w2 − ykz − xyz = 0
E6,0 z2 − yw = 0

zw + y2z − x2y = 0
w2 + y2w − x2z = 0

E0,7 z2 − yw = 0
zw − x2y − y4 = 0
w2 − x2z − y3z = 0

E7,0 z2 − yw = 0
zw + x2z − y3 = 0
w2 + x2w − y2z = 0
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 Lojasiewicz Exponent of Rational Singularities

Consider the analytic map germs fi : CN → C so that

F = (f1, f2, . . . , fk) : CN → Ck

defines the rational singularity (X , 0).

The  Lojasiewicz exponent L0(F ) of F at the origin in CN is the infimum of the set of all real

numbers θ > 0 such that there exists a positive constant c such that

c‖z‖θ ≤ ‖F (z)‖ as ‖z‖ << 1
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Quasi-Homogeneous Ideals

Definition
A map F = (f1, . . . , fk) : CN −→ Ck is called quasi-homogeneous if

fi(λ
w1z1, λ

w2z2, . . . , λ
wNzN) = λdi fi(z1, z2, . . . , zN)

where

w = (w1, . . . ,wN) ∈ (R+ − {0})N and d = (d1, . . . , dk) ∈ (R+ − {0})k .

Remark
The RTP-singularities are quasi-homogeneous.
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 Lojasiewicz Exponent of Quasi-Homogeneous Ideal

Theorem (A.Haraux and T.S.Pham, 2015)

F = (f1, . . . , fk) : CN −→ Ck be a quasi-homogeneous map germ with the

weight w = (w1, . . . ,wN) ∈ ZN
>0 and the quasi-degree d = (d1, . . . , dk) ∈ Zk

>0.

Assume that F has an isolated singularity at the origin. Then

min{d1, . . . , dk}
min{w1, . . . ,wN}

≤ L0(F ) ≤ max{d1, . . . , dk}
min{w1, . . . ,wN}
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RTP-Singularities as Quasi-homogeneous Functions

RTP weights min{d} max{d}

Ak,`,m (m, 1, k, `) 2m 2k + `− 1

Bk−1,2` (2` − 1, 2, 2k + 1, 2`) for l ≥ k + 1,

(k + 1, 2, k + `, 2`) for l < k + 1

4` or 2k`+ 2`− 1 4` or 2k`+ 2`+ 1

Bk−1,2`−1 (2`− 2, 2, 2k + 1, 2`− 1) 2k + 2`− 1 or 4`− 2 4`− 2 or 2k + 2`

Ck−1,`+1 (2, `, k .`+ `− 2, `+ 1) 2`+ 2 or k`+ `2 k .`+ `+ 1

Dk−1 (4, 3, 3k + 2, 6) 9,12 k ≥ 2 12,18, 3k +8 k ≥ 3

Fk−1 (6, 4, 4k + 3, 9) 13,17,18 k ≥ 3 18,4k+12 k ≥ 2

H3k−1 (3k − 3, 3, 3k − 2, 3k − 1) 6k-4 6k-2

H3k (3k − 2, 3, 3k − 1, 3k) 6k-2 6k

H3k+1 (3k − 1, 3, 3k + 1, 3k) 6k 6k+2

E6,0 (5,4,6,8) 12 16

E0,7 (9, 6, 10, 14) 18 28

E7,0 (5, 6, 8, 10) 16 20

Table: Length table for RTP-singularitiesM. Tosun Galatasaray Üniversity
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 Lojasiewicz Exponent of Rational Singularities

Let F = (f1, f2, . . . , fk) : CN → Ck defines the rational singularity (X , 0).

Let g1, . . . , gs be the 2× 2 minors of
( ∂fi
∂zj

)
where s :=

(
N
2

)(
k
2

)
.

Consider F = (f1, . . . , fk , g1, . . . , gs) : CN → Ck+s .

The  Lojasiewicz exponent L0(F ) of F at the origin in CN is the infimum of the set of all real

numbers θ > 0 such that there exists a positive constant c such that

c‖z‖θ ≤ ‖F (z)‖ as ‖z‖ << 1
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RTP-Singularities as Quasi-homogeneous Functions

RTP weights min{d} max{d} `(Jac)

Ak,`,m (m, 1, k, `) 2m 2k + `− 1 k + `+m + 5

Bk−1,2` (2`−1, 2, 2k+1, 2`) for l ≥ k+1,

(k + 1, 2, k + `, 2`) for l < k + 1

4k + 2 6`− 3 3k+2l+3 for l ≥ k+1,

k + 4l + 2 for l < k + 1

Bk−1,2`−1 (2`− 2, 2, 2k + 1, 2`− 1) 4k + 2 6`− 3 k + 4` for l ≤ k + 1,

3k+2`+2 for ` > k+1

Ck−1,`+1 (2, `, k.`+ `− 2, `+ 1) k.`+ `− 4 `+ 3 k + `+ 7

D2t−1 (4, 3, 3k + 2, 6) 10 6k + 7 k + 11

Fk−1 (6, 4, 4k + 3, 9) 15 4k + 26 k + 14

H3k−1 (3k − 3, 3, 3k − 2, 3k − 1) 6k − 4 9k − 7 5k + 2

H3k (3k − 2, 3, 3k − 1, 3k) 6k − 2 9k − 4 5k + 3

H3k+1 (3k − 1, 3, 3k + 1, 3k) 6k 9k − 1 5k + 5

E6,0 (5, 4, 6, 8) 12 21 13

E0,7 (9, 6, 10, 14) 20 37 14

E7,0 (5, 6, 8, 10) 16 27 14

Table: Length table for RTP-singularities
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 Lojasiewicz Exponent of Rational Singularities

Conjecture
Let X be a surface with a rational singularity. Then

L0(X ) ≤ m0(X ) · L0(Jac)

M. Tosun Galatasaray Üniversity
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 Lojasiewicz Exponent of Rational Singularities

Proposition
Let G1, . . . ,Gn be the Q-generators in S(π).

L0(X ) ≤
n

min
i=1
{k ∈ Q>0 | Gi ≤ k · Z ,∀i = 1, . . . , r}
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