Łojasiewicz exponent of rational singularities and ideals

in their local ring

MERAL TOSUN
Galatasaray University
joint work with Emel Bilgin and Gulay Kaya
Gdans̀k-Krakòw-Lódź-Warszawa Seminar in Singularity Theory

November 26, 2021

Łojasiewicz Inequality

Theorem (Stanislaw Łojasiewicz, 1958)

Let $U \subset \mathbb{R}^{N}$ be an open set.

Let $F: U \longrightarrow \mathbb{R}$ be a real analytic function.
Assume that $V(F) \neq \emptyset$.
Then, for any compact set K in U there exist $\alpha>1$ and a constant $c>0$ such that

$$
\inf _{z \in V(F)}|p-\mathbf{z}|^{\alpha} \leq c \cdot|F(p)|
$$

for all $p \in K$.

Łojasiewicz Gradient Inequality

Theorem (Stanislaw Łojasiewicz, 1963)

Let $U \subset \mathbb{R}^{N}$ be an open set.
Let $F: U \longrightarrow \mathbb{R}$ be a real analytic function.
Assume that $V(F) \neq \emptyset$.
Then, for every $p \in U$ there exists a neighborhood U^{\prime} of p and constants $\beta, c>0$ such that

$$
|F(\mathbf{z})-F(p)|^{\beta} \leq c \cdot|\nabla F(\mathbf{z})|
$$

for all $\mathbf{z} \in U^{\prime}$.

Łojasiewicz Gradient Inequality

Theorem (Stanislaw Łojasiewicz, 1963)

Let $U \subset \mathbb{R}^{N}$ be an open set.
Let $F: U \longrightarrow \mathbb{R}$ be a real analytic function.
Assume that $V(F) \neq \emptyset$.
Then, for every $p \in U$ there exists a neighborhood U^{\prime} of p and constants $\beta, c>0$ such that

$$
|F(\mathbf{z})-F(p)|^{\beta} \leq c \cdot|\nabla F(\mathbf{z})|
$$

for all $\mathbf{z} \in U^{\prime}$.

Remark

The first inequality implies the second inequality.

Łojasiewicz Inequalities

The aim is to find the smallest possible exponents α, β, θ such that

$$
\begin{gathered}
|f(\mathbf{x})| \geq c \cdot|\mathbf{x}|^{\alpha} \\
|\nabla f(\mathbf{x})| \geq c \cdot|\mathbf{x}|^{\beta} \\
|\nabla f(\mathbf{x})| \geq c \cdot|f(\mathbf{x})|^{\theta}
\end{gathered}
$$

for an analytic function f defined in a neighborhood of 0 in k^{n}.

Łojasiewicz Inequality

Theorem (B. Teissier, 1977)
 We have $\theta=\frac{\beta}{\beta+1}$.

Łojasiewicz Inequality

Theorem (J. Gwodziewicz, 1999)

We have:

$$
\begin{aligned}
& \alpha=\beta+1, \\
& \theta=\frac{\beta}{\alpha}, \\
& \beta=N+\frac{a}{b} \text { where } 0<a<b<N^{n-1} .
\end{aligned}
$$

In complex case

Łojasiewicz Exponent

Let $f(\mathbf{z})=f\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{C}\left\{z_{1}, \ldots, z_{N}\right\}$ with an isolated singularity at the origin.
Then there exists a neighborhood U of 0 in \mathbb{C}^{N} and constants $\theta, c>0$ such that

$$
|\mathbf{z}|^{\theta} \leq c \cdot|\nabla f(\mathbf{z})|
$$

for all $\mathbf{z} \in U$.
The infimum of all possible θ is called the Łojasiewicz exponent $\mathcal{L}_{0}(f)$ of f.

Łojasiewicz Exponent of an Hypersurface

Let $f: \mathbb{C}^{N} \rightarrow \mathbb{C}$ be an analytic function germ.
Consider the hypersurface

$$
X:=\left\{\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{C}^{N} \mid f\left(z_{1}, \ldots, z_{N}\right)=0\right\}
$$

with an isolated singularity at the origin.

Definition

The Łojasiewicz exponent $\mathcal{L}_{0}(X)$ of X is the Łojasiewicz exponent $\mathcal{L}_{0}(f)$.

Łojasiewicz Exponent of an Hypersurface

Question
 Is $\mathcal{L}_{0}(X)$ a topological invariant?

Łojasiewicz Exponent of an Hypersurface

Question

Is $\mathcal{L}_{0}(X)$ a topological invariant?

Question

Find a formula to compute $\mathcal{L}_{0}(X)$ using other invariants of X ?

Łojasiewicz Exponent of an Hypersurface

Question

Is $\mathcal{L}_{0}(X)$ a topological invariant?

Question

Find a formula to compute $\mathcal{L}_{0}(X)$ using other invariants of X ?

Question

What is the best estimation of $\mathcal{L}_{0}(X)$ for a given X ?

Łojasiewicz Exponent of an Hypersurface

Question

Is $\mathcal{L}_{0}(X)$ a topological invariant?

Question

Find a formula to compute $\mathcal{L}_{0}(X)$ using other invariants of X ?

Question

What is the best estimation of $\mathcal{L}_{0}(X)$ for a given X ?

Question

Is there any relation between the multiplicity $m_{0}(X)$ and $\mathcal{L}_{0}(X)$ for a given X ?

Łojasiewicz Exponent of an Hypersurface

Theorem (A. Ploski, 1990)

Let $C:=\left\{\left(z_{1}, z_{2}\right) \mid f\left(z_{1}, z_{2}\right)=0\right\} \subset \mathbb{C}^{2}$.
Consider

$$
f_{z_{1}}^{\prime}=\frac{\partial F}{\partial z_{1}}=g_{1} \cdots g_{r}, \quad f_{z_{2}}^{\prime}=\frac{\partial F}{\partial z_{2}}=h_{1} \cdots h_{s}
$$

where g_{i} and h_{j} are irreducible for each i, j.
Then the Łojasiewicz exponent of the curve C is given by

$$
\mathcal{L}_{0}(C)=\max _{i, j}\left\{\frac{\left(f_{z_{1}}^{\prime}, h_{i}\right)_{0}}{\operatorname{ord}\left(h_{i}\right)}, \frac{\left(f_{z_{2}}^{\prime}, g_{j}\right)_{0}}{\operatorname{ord}\left(g_{j}\right)}\right\}
$$

Here $(f, g)_{0}$ denotes the intersection multiplicity at the origin.

Łojasiewicz Exponent of an Hypersurface

Theorem (T.Krasinski, G.Oleksik, A.Ploski, 2009)

Let f be a weighted homogeneous polynomial with an isolated singularity at 0 with weights
$\left(w_{1}, \ldots, w_{N}\right)$ and degree d.
Assume that $d \geq 2 w_{i}$ for all i.

Then

$$
\mathcal{L}_{0}(X)=\frac{d-\min \left\{w_{i}\right\}}{\min \left\{w_{i}\right\}}
$$

Without the assumption $d \geq 2 w_{i}$, we have:

$$
\mathcal{L}_{0}(X)=\min \left\{\prod_{i=1}^{3}\left(\frac{d}{w_{i}}-1\right), \frac{d-\min \left\{w_{i}\right\}}{\min \left\{w_{i}\right\}}\right\}
$$

Example - $\mathcal{L}_{0}(X)$ of ADE-singularities

Singularity $(X, 0)$	$\left(w_{1}, w_{2}, w_{3}\right)$	d	$\mathcal{L}_{0}(X)$
$A_{2 k}: z_{3}^{2}+z_{2}^{2}+z_{1}^{n+1}=0$	$(2,2 k+1,2 k+1)$	$4 k+2$	n
$A_{2 k+1}: z_{3}^{2}+z_{2}^{2}+z_{1}^{n+1}=0$	$(1, k+1, k+1)$	$2 k+2$	n
$D_{n}: z_{3}^{2}+z_{1} z_{2}^{2}+z_{1}^{n-1}=0$	$(2, n-2, n-1)$	$2(n-1)$	$n-2$
$E_{6}: z_{3}^{2}+z_{2}^{3}+z_{1}^{4}=0$	$(3,4,6)$	12	3
$E_{7}: z_{3}^{2}+z_{2}^{3}+z_{1}^{3} z_{2}=0$	$(4,6,9)$	18	$\frac{7}{2}$
$E_{8}: z_{3}^{2}+z_{2}^{3}+z_{1}^{5}=0$	$(6,10,15)$	30	4

Łojasiewicz Exponent of a Surface

Remark

We can define the Łojasiewicz exponent $\mathcal{L}_{0}(f)$ of any holomorphic map

$$
F:\left(\mathbb{C}^{N}, 0\right) \rightarrow\left(\mathbb{C}^{m}, 0\right)
$$

having an isolated zero at the origin.

Rational Singularities of Surfaces

Definition

Let $X \subset \mathbb{C}^{N}$ be a surface with an isolated singularity at the origin.
Let $\pi:(\tilde{X}, E) \rightarrow(X, 0)$ be a resolution of $(X, 0)$.
Let $\pi^{-1}(0):=\cup E_{i}$ be the exceptional curve.
$\underline{(X, 0)}$ is a rational singularity if $H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)=0$.

Local Ring of a Rational Singularity

Let $g \in \mathcal{O}_{X, 0}$.
We have $\pi^{*}(g)=D_{g}+T_{g}$ where $D_{g}=\sum_{i=1}^{n} \nu_{E_{i}}(g) E_{i}$ and T_{g} is the strict transform of f by π.

Let $\mathcal{S}(\pi)$ be the set of such positive divisors D_{g}.

Łojasiewicz Exponent of Rational Singularities

partial ordering

Rational Singularities of Surfaces

> Theorem (M.Artin, 1964)
> Let $X:=(X, 0)$ be a surface with a rational singularity at 0 in \mathbb{C}^{N}.
> Let Z be the Artin cycle of π. Then mult $_{0}(X)=-(Z \cdot Z)$.

Local Ring of a Rational Singularity

Let $\mathcal{S}(\mathbf{I})$ be the set of \mathcal{M}-primary integrally closed ideals I in $\mathcal{O}_{X, 0}$ such that

$I \mathcal{O}_{\tilde{x}}$ is invertible.

Theorem (J.Lipman,1969)

The product of integrally closed ideals in $\mathcal{O}_{X, 0}$ is integrally closed.

Corollary

The set $\mathcal{S}(\mathbf{I})$ is a semigroup with respect to the product.

Local Ring of a Rational Singularity

Theorem (J.Lipman, 1969)
 For a rational singularity, we have a 1-1 correspondence between $\mathcal{S}(\mathbf{I})$ and $\mathcal{S}(\pi)$.

Łojasiewicz Exponent of an Ideal

Definition

Let $X \subset \mathbb{C}^{N}$ be a germ of surface with an isolated singularity at 0 .
Let $I=<f_{1}, \ldots, f_{k}>\subset \mathcal{O}_{X, 0}$ and $g \in \mathcal{O}_{X, 0}$ with $g \in \sqrt{I}$.
If there is an open neighbourhood U of 0 in X and $c \in \mathbb{R}_{+}$with

$$
|g(z)|^{\theta} \leq c \cdot \sup _{i=1, \ldots, k}\left|f_{i}(z)\right|, \quad \forall z \in U
$$

then the greatest lower bound of θ 's is called the Łojasiewicz exponent of g w.r.t. I.
We denote it by $\mathcal{L}_{l}(g)$.

This definition does not depend on the generators of I.

Łojasiewicz Exponent of an Ideal

Theorem (B.Teissier, M.Lejeune-Jalabert, 1974)

Let $I=<f_{1}, \ldots, f_{k}>\subset \mathcal{O}_{X, 0}$ and $g \in \mathcal{O}_{X, 0}$ with $g \in \sqrt{I}$.
Let $\nu_{E_{i}}(g)$ be the vanishing order of $g \circ \pi$ along E_{i}, the largest integer p such that $g \in I^{p}$.

$$
\mathcal{L}_{l}(g)=\max _{i=1}^{k}\left\{\frac{\nu_{E_{i}}(I)}{\nu_{E_{i}}(g)}\right\}
$$

Łojasiewicz Exponent of an Ideal

Theorem (B.Teissier, M.Lejeune-Jalabert, 1974)

Let $I=<f_{1}, \ldots, f_{k}>\subset \mathcal{O}_{X, 0}$ and $g \in \mathcal{O}_{X, 0}$ with $g \in \sqrt{I}$.
Let $\nu_{E_{i}}(g)$ be the vanishing order of $g \circ \pi$ along E_{i}, the largest integer p such that $g \in I^{p}$.

$$
\mathcal{L}_{l}(g)=\max _{i=1}^{k}\left\{\frac{\nu_{E_{i}}(I)}{\nu_{E_{i}}(g)}\right\}
$$

Corollary
 $\mathcal{L}_{l}(g) \in \mathbb{Q}_{+}$.

Łojasiewicz Exponent of an Ideal

More generally:

Definition

Let I, J be two ideals in $\mathcal{O}_{X, 0}$ with $J \subset \sqrt{I}$.
The Łojasiewicz exponent of the ideal $J=<h_{1}, \ldots, h_{r}>\subset \mathcal{O}_{X, 0}$ with respect to I is

$$
\mathcal{L}_{l}(J)=\max _{i=1, \ldots, r} \mathcal{L}_{l}\left(h_{i}\right)
$$

Łojasiewicz Exponent of an Ideal

Theorem (B.Teissier, M.Lejeune-Jalabert, 1974)
Let $X \subset \mathbb{C}^{N}$ be a germ of surface with an isolated singularity at 0 .

Let $I, J \subset \mathcal{O}_{X, 0}$ be two ideals.
Then

$$
\mathcal{L}_{l}(J)=\inf \left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{N}^{*}, I^{a} \subseteq \overline{J^{b}}\right\}
$$

Local Ring of a Rational Singularity

Definition

Let $I \in \mathcal{S}(\mathbf{I})$. An element $f \in I$ is called generic for $/$ if

$$
\nu_{E_{i}}(f) \leq \nu_{E_{i}}(h)
$$

for all $h \in I$.

Łojasiewicz Exponent of Rational Singularities

Proposition

Let $I \in \mathcal{S}(\mathbf{I})$ and g be the generic element of I.
Let Z be the Artin divisor of π.

Then

$$
\mathcal{L}_{\mathcal{M}}(I)=\max \left\{\left.\frac{a}{b} \right\rvert\, a \cdot Z \geq b \cdot D_{g} \text { with } a, b \in \mathbb{N}^{*}\right\}
$$

where g is the generic element of I and \mathcal{M} is the maximal ideal in $\mathcal{O}_{X, 0}$.

Łojasiewicz Exponent of Rational Singularities

Proposition

Let $I \in \mathcal{S}(\mathbf{I})$.
The Łojasiewicz exponent $\mathcal{L}_{0}(I)$ is given by

$$
\mathcal{L}_{0}(I):=\max _{i=1}^{n}\left\{\frac{\nu_{E_{i}}\left(D_{l}\right)}{\nu_{E_{i}}(Z)}\right\}
$$

In particular, we have $\mathcal{L}_{0}(\mathcal{M})=1$.

Łojasiewicz Exponent of Rational Singularities

\mathbb{Q}-gen. of E_{6}	$\ell(I)$	$\mathcal{L}_{0}(I)$	\mathbb{Q}-gen. of E_{7}	$\ell(I)$	$\mathcal{L}_{0}(I)$	\mathbb{Q}-gen. of E_{8}	$\ell(I)$	$\mathcal{L}_{0}(I)$
$(1,2,3,2,1,2) *$	1	1	$(2,3,4,3,2,1,2) *$	1	1	$(2,4,6,5,4,3,2,3) *$	1	1
$(2,3,4,3,2,2)$	2	2	$(2,4,6,5,4,2,3) *$	2	2	$(4,7,10,8,6,4,2,5) *$	2	2
$(2,4,6,4,2,3) *$	3	2	$(2,4,6,5,4,3,3) *$	3	$3 / 2$	$(4,8,12,10,8,6,3,6) *$	3	2
$(4,5,6,4,2,3) *$	6	4	$(3,6,8,6,4,2,4) *$	3	2	$(3,6,9,12,15,10,5,8) *$	4	$8 / 3$
$(2,4,6,5,4,3) *$	6	4	$(3,6,9,7,5,3,5)$	4	3	$(6,12,18,15,12,8,4,9) *$	6	3
$(5,10,12,8,4,6) *$	15	5	$(4,8,12,9,6,3,6) *$	6	3	$(7,14,20,16,12,8,4,10) *$	7	$7 / 2$
$(4,8,12,10,5,6) *$	15	5	$(4,8,12,9,6,3,7) *$	7	$7 / 2$	$(7,14,21,17,13,9,5,11)$	8	$11 / 3$
			$(6,12,18,15,10,5,9) *$	15	5	$(8,16,24,20,15,10,5,12) *$	10	4
						$(10,20,30,24,18,12,6,15) *$	15	5

Łojasiewicz Exponent of Rational Singularities

Recall

The length of an ideal $/$ in a ring R is the dimension of R / I over k.

Łojasiewicz Exponent of Rational Singularities

Theorem

The length of $I \in \mathcal{S}(\mathbf{I})$ is given by

$$
\ell(I)=\frac{-\left(D_{l} \cdot D_{l}\right)-\sum_{i=1}^{n} \nu_{E_{i}}\left(D_{l}\right)\left(w_{i}-2\right)}{2}
$$

where $w_{i}=-E_{i}^{2}$ for all i.

Remark

For an ideal I with $\ell(I)=p$ we have $\mathcal{M}^{p} \subseteq I$.

Łojasiewicz Exponent of Rational Singularities

\mathbb{Q}-gen. of E_{6}	$\ell(I)$	$\mathcal{L}_{0}(I)$	\mathbb{Q}-gen. of E_{7}	$\ell(I)$	$\mathcal{L}_{0}(I)$	\mathbb{Q}-gen. of E_{8}	$\ell(I)$	$\mathcal{L}_{0}(I)$
$(1,2,3,2,1,2) *$	1	1	$(2,3,4,3,2,1,2) *$	1	1	$(2,4,6,5,4,3,2,3) *$	1	1
$(2,3,4,3,2,2)$	2	2	$(2,4,6,5,4,2,3) *$	2	2	$(4,7,10,8,6,4,2,5) *$	2	2
$D_{p}=(2,4,6,4,2,3) *$	3	2	$D_{p}=(2,4,6,5,4,3,3) *$	3	$3 / 2$	$(4,8,12,10,8,6,3,6) *$	3	2
$(4,5,6,4,2,3) *$	6	4	$(3,6,8,6,4,2,4) *$	3	2	$D_{p}=(3,6,9,12,15,10,5,8) *$	4	$8 / 3$
$(2,4,6,5,4,3) *$	6	4	$(3,6,9,7,5,3,5)$	4	3	$(6,12,18,15,12,8,4,9) *$	6	3
$(5,10,12,8,4,6) *$	15	5	$(4,8,12,9,6,3,6) *$	6	3	$(7,14,20,16,12,8,4,10) *$	7	$7 / 2$
$(4,8,12,10,5,6) *$	15	5	$(4,8,12,9,6,3,7) *$	7	$7 / 2$	$(7,14,21,17,13,9,5,11)$	8	$11 / 3$
			$(6,12,18,15,10,5,9) *$	15	5	$(8,16,24,20,15,10,5,12) *$	10	4
						$(10,20,30,24,18,12,6,15) *$	15	5

Łojasiewicz Exponent of Rational Singularities

Observations

Let X be a surface with an ADE-type singularity. Then

$$
\mathcal{L}_{0}(X) \leq m_{0}(X) \cdot \mathcal{L}_{0}\left(D_{p}\right)
$$

where D_{p} is a special divisor in $S(\pi)$.

Rational Singularities of Surfaces

```
Theorem (M.Artin, 1964)
Let }X:=(X,0)\mathrm{ be a surface with a rational singularity at 0 in }\mp@subsup{\mathbb{C}}{}{N}\mathrm{ .
Let Z be the Artin cycle of }\pi\mathrm{ . Then
(i) pat Z ) =0
(ii) multo(X) = -(Z.Z)
(iii) emb.dim.(X) = -(Z.Z)+1
```


Rational Singularities of Surfaces

Corollary

A rational singularity $(X, 0) \subset\left(\mathbb{C}^{N}, 0\right)$ has multiplicity $N-1$ and is defined by

$$
k:=\frac{(N-1)(N-2)}{2} \text { equations. }
$$

Tjurina equations

RTP	Tjurina's equations	RTP	Tjurina's equations
$\begin{aligned} & A_{k-1, \ell-1, m-1} \\ & k, \ell, m \geq 1 \end{aligned}$	$\begin{aligned} & x w-y^{m} w-y^{l+m}=0 \\ & z w+y^{l} z-y^{k} w=0 \\ & x z-y^{m+k}=0 \end{aligned}$	$\begin{aligned} & C_{k-1, \ell+1} \\ & k \geq 1, \ell \geq 2 \end{aligned}$	$\begin{aligned} & x z-y^{k} w=0 \\ & w^{2}-x^{l+1}-x y^{2}=0 \\ & z w-x^{k} y^{k}-y^{k+2}=0 \end{aligned}$
$\begin{aligned} & B_{k-1, n} \\ & n=2 \ell>3 \end{aligned}$	$\begin{aligned} & x z-y^{k+\ell}-y^{k} w=0 \\ & w^{2}+y^{\ell} w-x^{2} y=0 \\ & z w-x y^{k+1}=0 \end{aligned}$	$\begin{aligned} & B_{k-1, n} \\ & n=2 \ell-1 \geq 3 \end{aligned}$	$\begin{aligned} & x z-y^{k} w=0 \\ & z w-x y^{k+1}-y^{k+\ell}=0 \\ & w^{2}-x^{2} y-x y^{l}=0 \end{aligned}$
$\begin{aligned} & D_{k-1} \\ & k \geq 1 \end{aligned}$	$\begin{aligned} & x z-y^{k+2}-y^{k} w=0 \\ & z w-x^{2} y^{k}=0 \\ & w^{2}+y^{2} w-x^{3}=0 \end{aligned}$	$\begin{aligned} & F_{k-1} \\ & k \geq 1 \end{aligned}$	$\begin{aligned} & x z-y^{k} w=0 \\ & z w-x^{2} y^{k}-y^{k+3}=0 \\ & w^{2}-x^{3}-x y^{3}=0 \end{aligned}$
$\begin{aligned} & H_{n} \\ & n=3 k \end{aligned}$	$\begin{aligned} & z^{2}-x w=0 \\ & z w+y^{k} z-x^{2} y=0 \\ & w^{2}+y^{k} w-x y z=0 \end{aligned}$	$\begin{aligned} & H_{n} \\ & n=3 k+1 \end{aligned}$	$\begin{aligned} & z^{2}-x y^{k+1}-x y w=0 \\ & z w-x^{2} y=0 \\ & w^{2}+y^{k} w-x z=0 \end{aligned}$
$\begin{aligned} & H_{n} \\ & n=3 k-1 \end{aligned}$	$\begin{aligned} & z^{2}-x w=0 \\ & z w-x^{2} y-x y^{k}=0 \\ & w^{2}-y^{k} z-x y z=0 \end{aligned}$		
$E_{6,0}$	$\begin{aligned} & z^{2}-y w=0 \\ & z w+y^{2} z-x^{2} y=0 \\ & w^{2}+y^{2} w-x^{2} z=0 \end{aligned}$		
$E_{0,7}$	$\begin{aligned} & z^{2}-y w=0 \\ & z w-x^{2} y-y^{4}=0 \\ & w^{2}-x^{2} z-y^{3} z=0 \end{aligned}$		
$E_{7,0}$	$\begin{aligned} & z^{2}-y w=0 \\ & z w+x^{2} z-y^{3}=0 \\ & w^{2}+x^{2} w-y^{2} z=0 \end{aligned}$		

Łojasiewicz Exponent of Rational Singularities

Consider the analytic map germs $f_{i}: \mathbb{C}^{N} \rightarrow \mathbb{C}$ so that

$$
F=\left(f_{1}, f_{2}, \ldots, f_{k}\right): \mathbb{C}^{N} \rightarrow \mathbb{C}^{k}
$$

defines the rational singularity $(X, 0)$.
The Łojasiewicz exponent $\mathcal{L}_{0}(F)$ of F at the origin in \mathbb{C}^{N} is the infimum of the set of all real
numbers $\theta>0$ such that there exists a positive constant c such that

$$
c\|z\|^{\theta} \leq\|F(z)\| \text { as }\|z\| \ll 1
$$

Quasi-Homogeneous Ideals

Definition

A map $F=\left(f_{1}, \ldots, f_{k}\right): \mathbb{C}^{N} \longrightarrow \mathbb{C}^{k}$ is called quasi-homogeneous if

$$
f_{i}\left(\lambda^{w_{1}} z_{1}, \lambda^{w_{2}} z_{2}, \ldots, \lambda^{w_{N}} z_{N}\right)=\lambda^{d_{i}} f_{i}\left(z_{1}, z_{2}, \ldots, z_{N}\right)
$$

where

$$
w=\left(w_{1}, \ldots, w_{N}\right) \in\left(\mathbb{R}_{+}-\{0\}\right)^{N} \text { and } d=\left(d_{1}, \ldots, d_{k}\right) \in\left(\mathbb{R}_{+}-\{0\}\right)^{k}
$$

Quasi-Homogeneous Ideals

Definition

A map $F=\left(f_{1}, \ldots, f_{k}\right): \mathbb{C}^{N} \longrightarrow \mathbb{C}^{k}$ is called quasi-homogeneous if

$$
f_{i}\left(\lambda^{w_{1}} z_{1}, \lambda^{w_{2}} z_{2}, \ldots, \lambda^{w_{N}} z_{N}\right)=\lambda^{d_{i}} f_{i}\left(z_{1}, z_{2}, \ldots, z_{N}\right)
$$

where

$$
w=\left(w_{1}, \ldots, w_{N}\right) \in\left(\mathbb{R}_{+}-\{0\}\right)^{N} \text { and } d=\left(d_{1}, \ldots, d_{k}\right) \in\left(\mathbb{R}_{+}-\{0\}\right)^{k}
$$

Remark

The RTP-singularities are quasi-homogeneous.

Łojasiewicz Exponent of Quasi-Homogeneous Ideal

Theorem (A.Haraux and T.S.Pham, 2015)

$F=\left(f_{1}, \ldots, f_{k}\right): \mathbb{C}^{N} \longrightarrow \mathbb{C}^{k}$ be a quasi-homogeneous map germ with the weight $w=\left(w_{1}, \ldots, w_{N}\right) \in \mathbb{Z}_{>0}^{N}$ and the quasi-degree $d=\left(d_{1}, \ldots, d_{k}\right) \in \mathbb{Z}_{>0}^{k}$.

Assume that F has an isolated singularity at the origin. Then

$$
\frac{\min \left\{d_{1}, \ldots, d_{k}\right\}}{\min \left\{w_{1}, \ldots, w_{N}\right\}} \leq \mathcal{L}_{0}(F) \leq \frac{\max \left\{d_{1}, \ldots, d_{k}\right\}}{\min \left\{w_{1}, \ldots, w_{N}\right\}}
$$

RTP-Singularities as Quasi-homogeneous Functions

RTP	weights	$\min \{\mathbf{d}\}$	$\max \{\mathbf{d}\}$
$A_{k, \ell, m}$	($m, 1, k, \ell$)	$2 m$	$2 k+\ell-1$
$B_{k-1,2 \ell}$	$\begin{aligned} & (2 \ell-1,2,2 k+1,2 \ell) \text { for } I \geq k+1 \\ & (k+1,2, k+\ell, 2 \ell) \text { for } I<k+1 \end{aligned}$	4ℓ or $2 k \ell+2 \ell-1$	4ℓ or $2 k \ell+2 \ell+1$
$B_{k-1,2 \ell-1}$	$(2 \ell-2,2,2 k+1,2 \ell-1)$	$2 k+2 \ell-1$ or $4 \ell-2$	$4 \ell-2$ or $2 k+2 \ell$
$C_{k-1, \ell+1}$	$(2, \ell, k \cdot \ell+\ell-2, \ell+1)$	$2 \ell+2$ or $k \ell+\ell^{2}$	$k \cdot \ell+\ell+1$
D_{k-1}	$(4,3,3 k+2,6)$	$9,12 k \geq 2$	$12,18,3 k+8 k \geq 3$
F_{k-1}	$(6,4,4 k+3,9)$	13,17,18 $k \geq 3$	$18,4 \mathrm{k}+12 \mathrm{k} \geq 2$
$H_{3 k-1}$	$(3 k-3,3,3 k-2,3 k-1)$	6k-4	6k-2
$H_{3 k}$	$(3 k-2,3,3 k-1,3 k)$	6k-2	6k
$H_{3 k+1}$	$(3 k-1,3,3 k+1,3 k)$	6k	$6 \mathrm{k}+2$
$E_{6,0}$	(5,4,6,8)	12	16
$E_{0,7}$	$(9,6,10,14)$	18	28
$E_{7,0}$	$(5,6,8,10)$	16	20

Łojasiewicz Exponent of Rational Singularities

Let $F=\left(f_{1}, f_{2}, \ldots, f_{k}\right): \mathbb{C}^{N} \rightarrow \mathbb{C}^{k}$ defines the rational singularity $(X, 0)$.
Let g_{1}, \ldots, g_{s} be the 2×2 minors of $\left(\frac{\partial f_{i}}{\partial z_{j}}\right)$ where $s:=\binom{N}{2}\binom{k}{2}$.
Consider $F=\left(f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{s}\right): \mathbb{C}^{N} \rightarrow \mathbb{C}^{k+s}$.
The Łojasiewicz exponent $\mathcal{L}_{0}(F)$ of F at the origin in \mathbb{C}^{N} is the infimum of the set of all real numbers $\theta>0$ such that there exists a positive constant c such that

$$
c\|z\|^{\theta} \leq\|F(z)\| \text { as }\|z\| \ll 1
$$

RTP-Singularities as Quasi-homogeneous Functions

RTP	weights	$\min \{\mathbf{d}\}$	$\max \{\mathbf{d}\}$	$\ell(J a c)$
$A_{k, \ell, m}$	$(m, 1, k, \ell)$	$2 m$	$2 k+\ell-1$	$k+\ell+m+5$
$B_{k-1,2 \ell}$	$\begin{aligned} & (2 \ell-1,2,2 k+1,2 \ell) \text { for } l \geq k+1, \\ & (k+1,2, k+\ell, 2 \ell) \text { for } l<k+1 \end{aligned}$	$4 k+2$	$6 \ell-3$	$\begin{aligned} & 3 k+2 I+3 \text { for } l \geq k+1 \\ & k+4 I+2 \text { for } l<k+1 \end{aligned}$
$B_{k-1,2 \ell-1}$	$(2 \ell-2,2,2 k+1,2 \ell-1)$	$4 k+2$	$6 \ell-3$	$\begin{aligned} & k+4 \ell \text { for } l \leq k+1 \\ & 3 k+2 \ell+2 \text { for } \ell>k+1 \end{aligned}$
$C_{k-1, \ell+1}$	$(2, \ell, k \cdot \ell+\ell-2, \ell+1)$	k. $\ell+\ell-4$	$\ell+3$	$k+\ell+7$
$D_{2 t-1}$	$(4,3,3 k+2,6)$	10	$6 k+7$	$k+11$
F_{k-1}	$(6,4,4 k+3,9)$	15	$4 k+26$	$k+14$
$H_{3 k-1}$	$(3 k-3,3,3 k-2,3 k-1)$	$6 k-4$	$9 k-7$	$5 k+2$
$H_{3 k}$	$(3 k-2,3,3 k-1,3 k)$	$6 k-2$	$9 k-4$	$5 k+3$
$H_{3 k+1}$	$(3 k-1,3,3 k+1,3 k)$	$6 k$	$9 k-1$	$5 k+5$
$E_{6,0}$	$(5,4,6,8)$	12	21	13
$E_{0,7}$	(9, 6, 10, 14)	20	37	14
$E_{7,0}$	$(5,6,8,10)$	16	27	14

Łojasiewicz Exponent of Rational Singularities

Conjecture

Let X be a surface with a rational singularity. Then

$$
\mathcal{L}_{0}(X) \leq m_{0}(X) \cdot \mathcal{L}_{0}(J a c)
$$

Łojasiewicz Exponent of Rational Singularities

$$
\begin{aligned}
& \text { Proposition } \\
& \text { Let } G_{1}, \ldots, G_{n} \text { be the } \mathbb{Q} \text {-generators in } \mathcal{S}(\pi) \\
& \qquad \mathcal{L}_{0}(X) \leq \min _{i=1}^{n}\left\{k \in \mathbb{Q}_{>0} \mid G_{i} \leq k \cdot Z, \forall i=1, \ldots, r\right\}
\end{aligned}
$$

Łojasiewicz Exponent of Rational Singularities

