Extension of the Gusein-Zade Theorem on the jumps equal to 1 of the Milnor number in deformations of curve plane singularities

Aleksandra Zakrzewska

Faculty of Mathematics and Computer Science University of Lodz
GKLW Seminar in Singularity Theory
March 2023

Deformation of the singularity

Let $f_{0}:\left(\mathbb{C}^{2}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an isolated singularity.

Deformation of the singularity

Let $f_{0}:\left(\mathbb{C}^{2}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an isolated singularity.

Definition

A deformation of the singularity f_{0} is the germ of a holomorphic function $f=f(s, z):\left(\mathbb{C} \times \mathbb{C}^{2}, 0\right) \rightarrow(\mathbb{C}, 0)$ such that
(1) $f(0, z)=f_{0}(z)$,
(2) $f(s, 0)=0$.

Deformation of the singularity

Let $f_{0}:\left(\mathbb{C}^{2}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an isolated singularity.

Definition

A deformation of the singularity f_{0} is the germ of a holomorphic function $f=f(s, z):\left(\mathbb{C} \times \mathbb{C}^{2}, 0\right) \rightarrow(\mathbb{C}, 0)$ such that
(1) $f(0, z)=f_{0}(z)$,
(2) $f(s, 0)=0$.

The deformation $f(s, z)$ of the singularity f_{0} will also be treated as a family $\left(f_{s}\right)$ of functions germs, taking $f_{s}(z):=f(s, z)$.

Milnor number

Definition

Since f_{0} is an isolated singularity, f_{s} for sufficiently small s also has isolated singularities near 0 . By the above for sufficiently small s one can define μ_{s}

$$
\mu_{s}:=\mu\left(f_{s}\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{2} /\left(\nabla f_{s}\right)
$$

called the Milnor number of f_{s}, where \mathcal{O}_{2} is the ring of the holomorphic function germs at 0 , and $\left(\nabla f_{s}\right)$ is the ideal in \mathcal{O}_{2} generated by ∇f_{s}.

Jump of the Milnor number

Since the Milnor number is upper semi-continuous in the Zariski topology in families of singularities, there exists an open neighbourhood S of the point 0 such that
(1) $\mu_{s}=$ const. for $s \in S \backslash\{0\}$,
(2) $\mu_{0} \geq \mu_{s}$ for $s \in S$.

Jump of the Milnor number

Since the Milnor number is upper semi-continuous in the Zariski topology in families of singularities, there exists an open neighbourhood S of the point 0 such that
(1) $\mu_{s}=$ const. for $s \in S \backslash\{0\}$,
(2) $\mu_{0} \geq \mu_{s}$ for $s \in S$.

Definition

The constant difference $\mu_{0}-\mu_{s}$ (for $s \in S \backslash\{0\}$) will be called the jump of the deformation $\left(f_{s}\right)$ and denoted by $\lambda\left(\left(f_{s}\right)\right)$. The smallest non-zero value among all the jumps of deformations of the singularity f_{0} will be called the jump of the Milnor number of the singularity f_{0} and denoted by $\lambda\left(f_{0}\right)$.

Example

- Let $f_{0}(x, y)=x^{6}+y^{6}$.

Example

- Let $f_{0}(x, y)=x^{6}+y^{6}$.
- Its Milnor number is $\mu\left(f_{0}\right)=25$.

Example

- Let $f_{0}(x, y)=x^{6}+y^{6}$.
- Its Milnor number is $\mu\left(f_{0}\right)=25$.
- To calculate its jump of the Milnor number we have to consider all its deformations.

Example

- Let $f_{0}(x, y)=x^{6}+y^{6}$.
- Its Milnor number is $\mu\left(f_{0}\right)=25$.
- To calculate its jump of the Milnor number we have to consider all its deformations.
- For example:
- $f_{s}^{1}(x, y)=x^{6}+y^{6}+s(x+\varepsilon y)^{5}$, where $\varepsilon^{6}=-1$,
- $f_{s}^{2}(x, y)=x^{6}+\left(y^{2}+s x\right)^{3}$.

Example

- Let $f_{0}(x, y)=x^{6}+y^{6}$.
- Its Milnor number is $\mu\left(f_{0}\right)=25$.
- To calculate its jump of the Milnor number we have to consider all its deformations.
- For example:
- $f_{s}^{1}(x, y)=x^{6}+y^{6}+s(x+\varepsilon y)^{5}$, where $\varepsilon^{6}=-1$,
- $f_{s}^{2}(x, y)=x^{6}+\left(y^{2}+s x\right)^{3}$.
- Their Milnor numbers: $\mu\left(\left(f_{s}^{1}\right)\right)=21, \mu\left(\left(f_{s}^{2}\right)\right)=22$.

Example

- Let $f_{0}(x, y)=x^{6}+y^{6}$.
- Its Milnor number is $\mu\left(f_{0}\right)=25$.
- To calculate its jump of the Milnor number we have to consider all its deformations.
- For example:
- $f_{s}^{1}(x, y)=x^{6}+y^{6}+s(x+\varepsilon y)^{5}$, where $\varepsilon^{6}=-1$,
- $f_{s}^{2}(x, y)=x^{6}+\left(y^{2}+s x\right)^{3}$.
- Their Milnor numbers: $\mu\left(\left(f_{s}^{1}\right)\right)=21, \mu\left(\left(f_{s}^{2}\right)\right)=22$.
- In work [2] Brzostowski, Krasinski and Walewska proved that f_{s}^{2} realizes the jump of the Milnor number, so $\lambda\left(f_{0}\right)=3$.

The linear jump of Milnor number

We will consider the jump of the Milnor for all linear deformations of f_{0} i.e. deformations of the form $f_{s}=f_{0}+s g$, where g is a holomorphic function in the neighbourhood of 0 such that $g(0)=0$. The smallest non-zero value among all the jumps of linear deformations of the singularity f_{0} will be denoted $\lambda^{\operatorname{lin}}\left(f_{0}\right)$.

Singularities with the jump of Milnor number 1

In 1993 Gusein-Zade ([4]) proved that:

Theorem

If for a singularity f_{0} there exists a maximal exceptional divisor in the resolution process of the singularity f_{0} which intersects no more than three other components of the total preimage of the curve $f_{0}=0$, then $\lambda\left(f_{0}\right)=1$.

Singularities with the jump of Milnor number 1

In 1993 Gusein-Zade ([4]) proved that:

Theorem

If for a singularity f_{0} there exists a maximal exceptional divisor in the resolution process of the singularity f_{0} which intersects no more than three other components of the total preimage of the curve $f_{0}=0$, then $\lambda\left(f_{0}\right)=1$.

- In this work I will present additional conditions for a singularity f_{0} that $\lambda\left(f_{0}\right)=1$.

Singularities with the jump of Milnor number 1

In 1993 Gusein-Zade ([4]) proved that:

Theorem

If for a singularity f_{0} there exists a maximal exceptional divisor in the resolution process of the singularity f_{0} which intersects no more than three other components of the total preimage of the curve $f_{0}=0$, then $\lambda\left(f_{0}\right)=1$.

- In this work I will present additional conditions for a singularity f_{0} that $\lambda\left(f_{0}\right)=1$.
- These conditions (with those of Gusein-Zade) are the sufficient and necessary conditions for that $\lambda^{\text {lin }}\left(f_{0}\right)=1$.

Gusein-Zade Theorem

If there exists a maximal exceptional divisor (E) which intersects no more than three other components of the total preimage it means that we have one of below situation:

Enriques diagram

To get the main result we use the Enriques diagrams and a result of M. Alberich-Carraminñana and J.Roé.

Enriques diagram

To get the main result we use the Enriques diagrams and a result of M. Alberich-Carraminñana and J.Roé.

To any singularity we can assign its Enriques diagram D which represents the whole resolution process of this singularity. It is a finite graph with two types of edges and distinguished root R.

More details in E. Casas-Alvero Singularities of Plane Curve ([3]).

Proximity relation

The proximity relation between vertices in above example is defined as follows:
$R \rightarrow S, T \rightarrow R, T \rightarrow S, U \rightarrow T$

Types of vertices

The vertex can be one of three types.

Weighted Enriques diagram

- To an Enriques diagram D we assign the weight function $\nu: D \rightarrow \mathbb{Z}_{+}$.

Weighted Enriques diagram

- To an Enriques diagram D we assign the weight function $\nu: D \rightarrow \mathbb{Z}_{+}$.
- The number $\nu(P)$ represents the order of successive strict transforms of f_{0} at P.

Weighted Enriques diagram

- To an Enriques diagram D we assign the weight function $\nu: D \rightarrow \mathbb{Z}_{+}$.
- The number $\nu(P)$ represents the order of successive strict transforms of f_{0} at P.
- The pair (D, ν) will be called the weighted Enriques diagram.

Weighted Enriques diagram

- To an Enriques diagram D we assign the weight function $\nu: D \rightarrow \mathbb{Z}_{+}$.
- The number $\nu(P)$ represents the order of successive strict transforms of f_{0} at P.
- The pair (D, ν) will be called the weighted Enriques diagram.

Example

Let $f_{0}(x, y)=x^{7}-y^{4}$. Then the process of resolutions:

$x^{7}-y^{4} \quad \stackrel{1}{\leftarrow} \quad x^{3}-y^{4} \quad \stackrel{2}{\leftarrow} \quad x^{3}-y \quad \stackrel{3 .}{\leftarrow} \quad x^{2}-y$

$\stackrel{\text { 4. }}{\leftarrow} \quad x-y \quad \stackrel{5}{\leftarrow} \quad x-1$

Example

The Enriques diagram of this singularity:

Minimal diagrams

If we remove all leaves from an Enriques diagram of the singularity (D, ν) we get a minimal Enriques diagram.

Minimal diagrams

If we remove all leaves from an Enriques diagram of the singularity (D, ν) we get a minimal Enriques diagram.

Enriques diagram of $f_{0}=y\left(x^{4}+y^{5}\right)$ and its minimal diagram (black).

Theorem of M. Alberich-Carramiñana and J.Roé

M. Alberich-Carramiñana and J.Roé in their work ([1]):

- gave a necessary and sufficient condition for two Enriques diagrams of singularities to be linear adjacent. This a numeric condition that can be checked for any two diagrams;

Theorem of M. Alberich-Carramiñana and J.Roé

M. Alberich-Carramiñana and J.Roé in their work ([1]):

- gave a necessary and sufficient condition for two Enriques diagrams of singularities to be linear adjacent. This a numeric condition that can be checked for any two diagrams;
- proved that $(\tilde{D}, \tilde{\nu})$ is linear adjacent to (D, ν) if and only if for every singularity f_{0} with the Enriques diagram ($\tilde{D}, \tilde{\nu}$) there exists a linear deformation $\left(f_{s}\right)$ such that the Enriques diagram of a generic element f_{s} is (D, ν).

Corollary

Corollary (from Theorem of M. Alberich-Carramiñana and J.Roé)

(1) To check if one singularity is linear deformation of another it is sufficient to compare their Enriques diagrams (check if they are in some numeric relation.)
(2) Linear adjacency depends only on topological types of singularities.
(3) $\lambda^{\operatorname{lin}}\left(f_{0}\right)$ is a topological invariant.

Singularities with the jump of Milnor number 1

Gusein-Zade ([4]) proved that if for a singularity f_{0} there exists a maximal exceptional divisor which intersects no more than three other components of the total preimage of the curve $f_{0}=0$, then $\lambda\left(f_{0}\right)=1$.

Gusein-Zade Theorem

Gusein-Zade Theorem

Gusein-Zade Theorem

Singularities with the jump of Milnor number 1

Theorem (Gusein-Zade)

Let $f_{0}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a singularity and (D, ν) its minimal diagram. If one of below conditions is true:

1 the diagram D contains only root with weight 2,
2 there exists a leaf $P \in D$ such that P is satellite with weight 1 ,
3 there exists a leaf $P \in D$ such that P is free with weight 2 , then $\lambda\left(f_{0}\right)=\lambda^{\text {lin }}\left(f_{0}\right)=1$.

Additional conditions for the jump of Milnor number 1

Theorem

Let $f_{0}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a singularity and (D, ν) its minimal diagram. If one of below conditions is true:
4 there exists $P_{1}, \ldots, P_{k} \in D(k \geq 2)$ such that, P_{1} is the root, $P_{i} \rightarrow P_{i-1}$ for $i=2, \ldots, k, P_{2}$ it is the only vertex proximate to P_{1}, P_{k} it is the only vertex proximate to P_{k-1} and $\nu\left(P_{k}\right)=\nu\left(P_{1}\right)-2, \nu\left(P_{i}\right)=\nu\left(P_{1}\right)-1$ for $i=2, \ldots, k-1$ when $k>2$.

Additional conditions for the jump of Milnor number 1

Additional conditions for the jump of Milnor number 1

Theorem

5 there exists $P_{0}, P_{1}, \ldots, P_{k} \in D(k \geq 2)$ such that, P_{1} is free, $P_{1}, \ldots, P_{k} \rightarrow P_{0}, P_{i} \rightarrow P_{i-1}$ for $i=2, \ldots, k, P_{2}$ it is the only vertex proximate to P_{1}, P_{k} is the only vertex proximate to P_{k-1} and $\nu\left(P_{k}\right)=\nu\left(P_{1}\right)-2, \nu\left(P_{i}\right)=\nu\left(P_{1}\right)-1$ for $i=2, \ldots, k-1$ when $k>2$.
then $\lambda\left(f_{0}\right)=\lambda^{\text {lin }}\left(f_{0}\right)=1$.

Additional conditions for the jump of Milnor number 1

Characterization of singularities with the linear jump of Milnor 1

Main theorem

Theorem

Let $f_{0}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a singularity and (D, ν) its minimal diagram. We have $\lambda^{\text {lin }}\left(f_{0}\right)=1$ if and only if one of the $(1)-(5)$ condition is satisfied.

Proof \Leftarrow

For the diagram (D, ν) of f_{0} we will construct the diagram (E, λ) such that:

- (D, ν) is linear adjacent to (E, λ)
- $\mu((E, \lambda))=\mu((D, \nu))-1$.

Proof \Leftarrow

For the diagram (D, ν) of f_{0} we will construct the diagram (E, λ) such that:

- (D, ν) is linear adjacent to (E, λ)
- $\mu((E, \lambda))=\mu((D, \nu))-1$.

Then there exists a linear deformation that its generic element has the Enriques diagram (E, λ).

Proof \Leftarrow - condition (1)

The diagram D contains only root with weight 2 .

$$
(D, \nu) \bullet_{L}^{2}
$$

Proof \Leftarrow - condition (1)

The diagram D contains only root with weight 2 .

$$
(D, \nu) \bullet_{L}^{2}
$$

$$
(E, \lambda) \bullet \perp
$$

Proof \Leftarrow - condition (2)

There exists a leaf $P \in D$ such that P is satellite with weight 1 .

Proof \Leftarrow - condition (2)

There exists a leaf $P \in D$ such that P is satellite with weight 1 .

$$
(D, \nu) \begin{array}{lll}
& \cdots \cdots & \bullet_{P_{0}} \\
& \cdots\left(P_{0}\right) \\
& & \bullet_{P}^{1}
\end{array}
$$

$$
(E, \lambda) \quad \cdots \cdots \cdot \bullet_{P_{0}}^{\nu\left(P_{0}\right)}
$$

Proof \Leftarrow - condition (3)

There exists a leaf $P \in D$ such that P is free with weight 2 .

$$
(D, \nu) \quad \stackrel{---\bullet_{P_{0}}^{\nu}\left(P_{0}\right)}{\cdots}
$$

Proof \Leftarrow - condition (3)

There exists a leaf $P \in D$ such that P is free with weight 2 .

$$
\bullet_{P}^{2}
$$

(E, λ)

- ${ }_{P}$
|
- ${ }_{w}$

Proof \Leftarrow - condition (4)

There exists $P_{1}, \ldots, P_{k} \in D(k \geq 2)$ such that, P_{1} is the root, $P_{i} \rightarrow P_{i-1}$ for $i=2, \ldots, k, P_{2}$ it is the only vertex proximate to P_{1}, P_{k} it is the only vertex proximate to P_{k-1} and
$\nu\left(P_{k}\right)=\nu\left(P_{1}\right)-2, \nu\left(P_{i}\right)=\nu\left(P_{1}\right)-1$ for $i=2, \ldots, k-1$ when $k>2$.

Proof \Leftarrow - condition (4)

$$
\boldsymbol{\bullet}_{\rho_{1}-1}^{\boldsymbol{\bullet}_{\rho_{2}-1}^{\nu-1}}
$$

(E, λ)

Proof \Leftarrow - condition (5)

There exists $P_{0}, P_{1}, \ldots, P_{k} \in D(k \geq 2)$ such that, P_{1} is free, $P_{1}, \ldots, P_{k} \rightarrow P_{0}, P_{i} \rightarrow P_{i-1}$ for $i=2, \ldots, k, P_{2}$ it is the only vertex proximate to P_{1}, P_{k} is the only vertex proximate to P_{k-1} and $\nu\left(P_{k}\right)=\nu\left(P_{1}\right)-2, \nu\left(P_{i}\right)=\nu\left(P_{1}\right)-1$ for $i=2, \ldots, k-1$ when $k>2$.
(D, ν)

$$
\bullet_{P_{1}}^{\nu}-\bullet_{P_{2}}^{\nu-1}----\cdot \frac{P_{P_{k-1}}^{\nu-1}}{P_{k}}
$$

Proof \Leftarrow - condition (5)

(E, ν)

Proof \Rightarrow

- Let assume that $\lambda^{\operatorname{lin}}\left(f_{0}\right)=1$.
- Let assume that $\lambda^{\operatorname{lin}}\left(f_{0}\right)=1$.
- Then there exists a linear deformation $\left\{f_{s}\right\}$ such that its generic elements has a minimal diagram (E, λ) and (D, ν) is linear adjacent to (E, λ).
- Let assume that $\lambda^{\operatorname{lin}}\left(f_{0}\right)=1$.
- Then there exists a linear deformation $\left\{f_{s}\right\}$ such that its generic elements has a minimal diagram (E, λ) and (D, ν) is linear adjacent to (E, λ).
- Moreover $\mu(E, \lambda)=\mu(D, \nu)-1$.

Proof \Rightarrow

- Let assume that $\lambda^{\operatorname{lin}}\left(f_{0}\right)=1$.
- Then there exists a linear deformation $\left\{f_{s}\right\}$ such that its generic elements has a minimal diagram (E, λ) and (D, ν) is linear adjacent to (E, λ).
- Moreover $\mu(E, \lambda)=\mu(D, \nu)-1$.
- We will show that if (D, ν) does not satisfy the conditions (1) - (3) then it has to satisfy either condition (4) or (5).

Proof \Rightarrow

- Let $\left(D^{\prime}, \nu^{\prime}\right)$ be a modification of (D, ν) such that for two appropriately chosen $P_{1}, S \in D$:
- $D=D^{\prime}$
- $\nu^{\prime}(P)=\nu(P)$ for $P \in D \backslash\left\{P_{1}, S\right\}$
- $\nu^{\prime}\left(P_{1}\right)=\nu(P)-1, \nu^{\prime}(S)=\nu(S)+1$.
- Let $\left(D^{\prime}, \nu^{\prime}\right)$ be a modification of (D, ν) such that for two appropriately chosen $P_{1}, S \in D$:
- $D=D^{\prime}$
- $\nu^{\prime}(P)=\nu(P)$ for $P \in D \backslash\left\{P_{1}, S\right\}$
- $\nu^{\prime}\left(P_{1}\right)=\nu(P)-1, \nu^{\prime}(S)=\nu(S)+1$.
- $\left(D^{\prime}, \nu^{\prime}\right)$ is linear adjacent to (E, λ).
- Let $\left(D^{\prime}, \nu^{\prime}\right)$ be a modification of (D, ν) such that for two appropriately chosen $P_{1}, S \in D$:
- $D=D^{\prime}$
- $\nu^{\prime}(P)=\nu(P)$ for $P \in D \backslash\left\{P_{1}, S\right\}$
- $\nu^{\prime}\left(P_{1}\right)=\nu(P)-1, \nu^{\prime}(S)=\nu(S)+1$.
- $\left(D^{\prime}, \nu^{\prime}\right)$ is linear adjacent to (E, λ).
- Since the Milnor number is upper semi-continuous we get:
$\mu((D, \nu))-1=\mu((E, \lambda)) \leq \mu\left(\left(D^{\prime}, \nu^{\prime}\right)\right) \leq$
$\mu((D, \nu))-2(\nu(P)-\nu(S))+2+r_{D}-r_{D^{\prime}}$.
- Let $\left(D^{\prime}, \nu^{\prime}\right)$ be a modification of (D, ν) such that for two appropriately chosen $P_{1}, S \in D$:
- $D=D^{\prime}$
- $\nu^{\prime}(P)=\nu(P)$ for $P \in D \backslash\left\{P_{1}, S\right\}$
- $\nu^{\prime}\left(P_{1}\right)=\nu(P)-1, \nu^{\prime}(S)=\nu(S)+1$.
- $\left(D^{\prime}, \nu^{\prime}\right)$ is linear adjacent to (E, λ).
- Since the Milnor number is upper semi-continuous we get:
$\mu((D, \nu))-1=\mu((E, \lambda)) \leq \mu\left(\left(D^{\prime}, \nu^{\prime}\right)\right) \leq$
$\mu((D, \nu))-2(\nu(P)-\nu(S))+2+r_{D}-r_{D^{\prime}}$.
- It means that $1 \geq 2(\nu(P)-\nu(S))-2-r_{D}+r_{D^{\prime}}$.
- Let $\left(D^{\prime}, \nu^{\prime}\right)$ be a modification of (D, ν) such that for two appropriately chosen $P_{1}, S \in D$:
- $D=D^{\prime}$
- $\nu^{\prime}(P)=\nu(P)$ for $P \in D \backslash\left\{P_{1}, S\right\}$
- $\nu^{\prime}\left(P_{1}\right)=\nu(P)-1, \nu^{\prime}(S)=\nu(S)+1$.
- $\left(D^{\prime}, \nu^{\prime}\right)$ is linear adjacent to (E, λ).
- Since the Milnor number is upper semi-continuous we get: $\mu((D, \nu))-1=\mu((E, \lambda)) \leq \mu\left(\left(D^{\prime}, \nu^{\prime}\right)\right) \leq$
$\mu((D, \nu))-2(\nu(P)-\nu(S))+2+r_{D}-r_{D^{\prime}}$.
- It means that $1 \geq 2(\nu(P)-\nu(S))-2-r_{D}+r_{D^{\prime}}$.
- This condition is only true when (D, ν) satisfies the condition (4) or (5).

The linear deformation - condition (4)

Example
 Let $f_{0}(x, y)=y\left(x+y^{k-1}\right)\left(x^{2}+y^{2 k}\right)$, for $k \geq 2$.

The linear deformation - condition (4)

Example
Let $f_{0}(x, y)=y\left(x+y^{k-1}\right)\left(x^{2}+y^{2 k}\right)$, for $k \geq 2$.

The linear deformation - condition (4)

Example

Then the deformation is
$f_{s}(x, y)=y\left(x+y^{k-1}\right)\left(x^{2}+y^{2 k}\right)+s x\left(x^{2}+y^{2 k}\right)=$
$\left(y\left(x+y^{k-1}\right)+s x\right)\left(x^{2}+y^{2 k}\right)$.

The linear deformation - condition (4)

Example

Then the deformation is
$f_{s}(x, y)=y\left(x+y^{k-1}\right)\left(x^{2}+y^{2 k}\right)+s x\left(x^{2}+y^{2 k}\right)=$
$\left(y\left(x+y^{k-1}\right)+s x\right)\left(x^{2}+y^{2 k}\right)$.
$\bullet_{P_{1}}^{3} \longrightarrow$
$\bullet_{P_{2}}^{3}$

$\bullet_{P_{k}}^{3}$

Example

The conditions (1) - (5) are not necessary conditions for $\lambda\left(f_{0}\right)=1$.

Example

The conditions (1) - (5) are not necessary conditions for $\lambda\left(f_{0}\right)=1$.

Example

Let $f_{0}(x, y)=x^{4}+y^{6}$. Then:

Example

The conditions (1) - (5) are not necessary conditions for $\lambda\left(f_{0}\right)=1$.

Example

Let $f_{0}(x, y)=x^{4}+y^{6}$. Then:

- $\mu\left(f_{0}\right)=15$.

Example

The conditions (1) - (5) are not necessary conditions for $\lambda\left(f_{0}\right)=1$.

Example

Let $f_{0}(x, y)=x^{4}+y^{6}$. Then:

- $\mu\left(f_{0}\right)=15$.
- Its minimal Enriques diagram doesn't satisfy any condition

Example

The conditions (1) - (5) are not necessary conditions for $\lambda\left(f_{0}\right)=1$.

Example

Let $f_{0}(x, y)=x^{4}+y^{6}$. Then:

- $\mu\left(f_{0}\right)=15$.
- Its minimal Enriques diagram doesn't satisfy any condition
(1) - (5).

$\bullet^{4} \quad{ }^{2}$
- Let $f_{s}(x, y)=x^{4}+\left(y^{2}+s x\right)^{3}$ (nonlinear deformation) $\mu\left(f_{s}\right)=14$.

Example

The conditions (1) - (5) are not necessary conditions for $\lambda\left(f_{0}\right)=1$.

Example

Let $f_{0}(x, y)=x^{4}+y^{6}$. Then:

- $\mu\left(f_{0}\right)=15$.
- Its minimal Enriques diagram doesn't satisfy any condition
$(1)-(5)$.

-4 ${ }^{4}$
- Let $f_{s}(x, y)=x^{4}+\left(y^{2}+s x\right)^{3}$ (nonlinear deformation) $\mu\left(f_{s}\right)=14$.
- It means that $\lambda\left(f_{0}\right)=1$.

Thank you for your attention!

Bibliography

M. Alberich-Carramiñana, J.Roé: Enriques Diagrams and Adjacency of Planar Curve Singularities, Canad. J. Math. Vol 57(1), 2005.

S. Brzostowski, T. Krasiński, J. Walewska: Milnor numbers in deformations of homogeneous singularities Bulletin des Sciences Mathématiques,(168), 2021.
E. Casas-Alvero: Singularities of Plane Curve, Cambridge University Press, 2000.
S. Gusein-Zade: On singularities from which an A_{1} can be split off., Funct. Anal. Appl., 1993.

