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Deformation of the singularity

Let fy : (C2,0) — (C,0) be an isolated singularity.
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Deformation of the singularity

Let fy : (C2,0) — (C,0) be an isolated singularity.

Definition
A deformation of the singularity f, is the germ of a
holomorphic function f = f(s, z) : (C x C2,0) — (C, 0) such
that

Q 1(0,2) = f(2),

Q f(s,0) =0. )
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Deformation of the singularity

Let fy : (C2,0) — (C,0) be an isolated singularity.

Definition
A deformation of the singularity f, is the germ of a
holomorphic function f = f(s, z) : (C x C2,0) — (C, 0) such
that

Q 1(0,2) = f(2),

Q f(s,0) =0.

The deformation f(s, z) of the singularity f will also be treated
as a family (fs) of functions germs, taking fs(z) := f(s, 2).
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Milnor number

Definition

Since fy is an isolated singularity, fs for sufficiently small s also
has isolated singularities near 0. By the above for sufficiently
small s one can define ug

ps = p(fs) = dime Oz/(V's),

called the Milnor number of f;, where O, is the ring of the
holomorphic function germs at 0, and (Vf) is the ideal in O,
generated by V.
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Jump of the Milnor number

Since the Milnor number is upper semi-continuous in the
Zariski topology in families of singularities, there exists an open
neighbourhood S of the point 0 such that

@ us = const. for s € S\ {0},
Q 1o >psforse S.
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Jump of the Milnor number

Since the Milnor number is upper semi-continuous in the
Zariski topology in families of singularities, there exists an open
neighbourhood S of the point 0 such that

@ us = const. for s € S\ {0},

Q 1o >psforse S.

Definition

The constant difference g — us (for s € S\ {0}) will be called
the jump of the deformation (f;) and denoted by A\((f5)). The
smallest non-zero value among all the jumps of deformations of
the singularity fy will be called the jump of the Milnor number
of the singularity f; and denoted by \(f).
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o Let fO(X, y) _ X6 N ye.
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@ Let fy(x,y) = x® + y8.

@ Its Milnor number is pu(fy) = 25.
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Example

@ Let fy(x,y) = x® + y5.
@ Its Milnor number is pu(fy) = 25.

@ To calculate its jump of the Milnor number we have to
consider all its deformations.
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Example

@ Let fh(x,y) = x& + yb.
@ Its Milnor number is pu(fy) = 25.
@ To calculate its jump of the Milnor number we have to
consider all its deformations.
@ For example:
o f1(x,y) = x8+y® 4+ s(x +ey)®, where 8 = —1,
o Z(x,y) =x°+(y® +sx)°.
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Example

@ Let fh(x,y) = x& + yb.
@ Its Milnor number is pu(fy) = 25.
@ To calculate its jump of the Milnor number we have to
consider all its deformations.
@ For example:
o f1(x,y) = x8+y® 4+ s(x +ey)®, where 8 = —1,
o Z(x,y) =x°+(y® +sx)°.
@ Their Milnor numbers: u((f1)) = 21, u((f2)) = 22.
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Example

@ Let fh(x,y) = x& + yb.
@ Its Milnor number is pu(fy) = 25.
@ To calculate its jump of the Milnor number we have to
consider all its deformations.
@ For example:
o f1(x,y) = x8+y® 4+ s(x +ey)®, where 8 = —1,
o Z(x,y) =x°+(y® +sx)°.
@ Their Milnor numbers: u((f)) = 21, u((f2)) = 22.

@ In work [2] Brzostowski, Krasinski and Walewska proved
that 72 realizes the jump of the Milnor number, so A(f) = 3.
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The linear jump of Milnor number

We will consider the jump of the Milnor for all linear
deformations of f; i.e. deformations of the form f; = fy + sg,
where g is a holomorphic function in the neighbourhood of 0
such that g(0) = 0. The smallest non-zero value among all the
jumps of linear deformations of the singularity f, will be denoted
/\lin(fo)_
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Singularities with the jump of Milnor number 1

In 1993 Gusein-Zade ([4]) proved that:

If for a singularity fy there exists a maximal exceptional divisor
in the resolution process of the singularity fy which intersects
no more than three other components of the total preimage of
the curve fy = 0, then \(f) = 1.
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Singularities with the jump of Milnor number 1

In 1993 Gusein-Zade ([4]) proved that:

If for a singularity fy there exists a maximal exceptional divisor
in the resolution process of the singularity fy which intersects
no more than three other components of the total preimage of
the curve fy = 0, then \(f) = 1.

@ In this work | will present additional conditions for a
singularity fy that A(f)) = 1.
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Singularities with the jump of Milnor number 1

In 1993 Gusein-Zade ([4]) proved that:

If for a singularity fy there exists a maximal exceptional divisor
in the resolution process of the singularity fy which intersects
no more than three other components of the total preimage of
the curve fy = 0, then \(f) = 1.

@ In this work | will present additional conditions for a
singularity fy that A(f)) = 1.

@ These conditions (with those of Gusein-Zade) are the
sufficient and necessary conditions for that A"(fy) = 1.
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Gusein-Zade Theorem

If there exists a maximal exceptional divisor (E) which
intersects no more than three other components of the total
preimage it means that we have one of below situation:

S Glde
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Enriques diagram

To get the main result we use the Enriques diagrams and a
result of M. Alberich-Carraminfiana and J.Roé.
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Enriques diagram

To get the main result we use the Enriques diagrams and a
result of M. Alberich-Carraminfiana and J.Roé.

To any singularity we can assign its Enriques diagram D which
represents the whole resolution process of this singularity. It is
a finite graph with two types of edges and distinguished root R.

®s
o
.R .T

N,

More details in E. Casas-Alvero Singularities of Plane Curve

([3))-
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Proximity relation

The proximity relation between vertices in above example is
defined as follows:
R—ST—RT—-SU—~T

®s
i
L g~} T

N

U
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Types of vertices

The vertex can be one of three types.

/ LIS FREE VERTEX

(7 o SATELLITE VERTEX
W \ ® ) < FREE VERTEX
ROOT
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Weighted Enriques diagram

@ To an Enriques diagram D we assign the weight function
v:D—>7Z,.
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Weighted Enriques diagram

@ To an Enriques diagram D we assign the weight function
v:D—>7Z,.

@ The number v(P) represents the order of successive strict
transforms of f; at P.
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Weighted Enriques diagram

@ To an Enriques diagram D we assign the weight function
v:D—>7Z,.

@ The number v(P) represents the order of successive strict
transforms of f; at P.

@ The pair (D, v) will be called the weighted Enriques
diagram.
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Weighted Enriques diagram

@ To an Enriques diagram D we assign the weight function
v:D—>7Z,.

@ The number v(P) represents the order of successive strict
transforms of f; at P.

@ The pair (D, v) will be called the weighted Enriques
diagram.
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Example

Let fo(x, y) = x” — y*. Then the process of resolutions:

E, E, E,
Po< P 1K i E> i E>
7 4 3 4 3 2 _
xf—yt L -yt 2 Xy 3 X-y
E,4 E,
A X=y S x—1
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Example

The Enriques diagram of this singularity:

3
/ 5
4
*p,
1 1 1
°p, P,
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Minimal diagrams

If we remove all leaves from an Enriques diagram of the
singularity (D, v) we get a minimal Enriques diagram.
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Minimal diagrams

If we remove all leaves from an Enriques diagram of the
singularity (D, v) we get a minimal Enriques diagram.

Enriques diagram of fy = y(x* + y°) and its minimal diagram
(black).

i
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Theorem of M. Alberich-Carraminana and J.Roé

M. Alberich-Carramifiana and J.Roé in their work ([1]):

@ gave a necessary and sufficient condition for two Enriques
diagrams of singularities to be linear adjacent. This a
numeric condition that can be checked for any two
diagrams;
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Theorem of M. Alberich-Carraminana and J.Roé

M. Alberich-Carramifiana and J.Roé in their work ([1]):

@ gave a necessary and sufficient condition for two Enriques
diagrams of singularities to be linear adjacent. This a
numeric condition that can be checked for any two
diagrams;

@ proved that (D, 7) is linear adjacent to (D, v) if and only if
for every singularity fy with the Enriques diagram (D, )
there exists a linear deformation (fs) such that the
Enriques diagram of a generic element fs is (D, v).
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Corollary

Corollary (from Theorem of M. Alberich-Carramifiana and

J.Roé)

@ 7o check if one singularity is linear deformation of another
it is sufficient to compare their Enriques diagrams (check if
they are in some numeric relation.)

© Linear adjacency depends only on topological types of
singularities.

@ )\'"(fy) is a topological invariant.
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Singularities with the jump of Milnor number 1

Gusein-Zade ([4]) proved that if for a singularity f there exists a
maximal exceptional divisor which intersects no more than
three other components of the total preimage of the curve

fo =0, then A\(fy) = 1.
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Gusein-Zade Theorem

[N
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Gusein-Zade Theorem
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Gusein-Zade Theorem
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Singularities with the jump of Milnor number 1

Theorem (Gusein-Zade)

Let fy : C? — C be a singularity and (D, v) its minimal diagram.
If one of below conditions is true:

1 the diagram D contains only root with weight 2,

2 there exists a leaf P € D such that P is satellite with weight
1,

3 there exists a leaf P € D such that P is free with weight 2,
then \(fy) = M"(fy) = 1.
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Additional conditions for the jump of Milnor number 1

Let fy : C? — C be a singularity and (D, v) its minimal diagram.
If one of below conditions is true:

4 there exists Py, ..., Px € D (k > 2) such that, P is the
root, P — Pi_4 fori =2, ... k, P> itis the only vertex
proximate to Py, Py it is the only vertex proximate to Py_1
and I/(Pk) = V(P1) -2, I/(P,‘) = I/(P1) — 1 for
i=2,....,k—1whenk > 2.

g ..
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Additional conditions for the jump of Milnor number 1

v—1 1
/" .P2 //’/ ¢
1 N v—1
° ~<_
Pr_1 \
v—2
.Pk
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Additional conditions for the jump of Milnor number 1

5 there exists Py, P, ..., Px € D (k > 2) such that, P, is free,
Pi,...,Px— Py, P — Pi_{ fori=2,... Kk, Poitis the only
vertex proximate to Py, Py is the only vertex proximate to
Px—1 and v(Px) = v(Py) — 2, v(P;) = v(Py) — 1 for
i=2,....k—1whenk > 2.

then A(fy) = AP(fy) = 1.
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Additional conditions for the jump of Milnor number 1

____ gV(Po)
N 0 \
v v—1 v—1 v—2
P, P *P
/// ) ’ \ .
ol — o — -7 t---
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Characterization of singularities with the linear jump of
Milnor 1

Main theorem

Letfy: C? — C be a singularity and (D, v) its minimal diagram.
We have \'(fy) = 1 if and only if one of the (1) — (5) condition
is satisfied.
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Proof «

For the diagram (D, v) of f, we will construct the diagram (E, \)
such that :

@ (D,v)is linear adjacent to (E, \)
® u((E,N)) = u((D,v)) — 1.
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Proof «

For the diagram (D, v) of f, we will construct the diagram (E, \)
such that :

@ (D,v)is linear adjacent to (E, \)

o u((E,N) = u((D,v)) 1.
Then there exists a linear deformation that its generic element
has the Enriques diagram (E, X).
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Proof < - condition (1)

The diagram D contains only root with weight 2.

(D,v) o%
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Proof « - condition (1)

The diagram D contains only root with weight 2.

(D,v) o%

(E.\) of
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Proof < - condition (2)

There exists a leaf P € D such that P is satellite with weight 1.
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Proof < - condition (2)

There exists a leaf P € D such that P is satellite with weight 1.

______ .';(Po)
(Dv)
o}
v(P
(E,N) - of/®
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Proof «< - condition (3)

There exists a leaf P € D such that P is free with weight 2.
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Proof <« - condition (3)

There exists a leaf P € D such that P is free with weight 2.

777777 o2 (Fo)
(D7 V) TS °
2
*p
v(Po)
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E,\ 1
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|
1
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Proof <« - condition (4)

There exists Ps, ..., Px € D (k > 2) such that, P is the root,
Pi— Pi_qfori=2,...,k, Py itis the only vertex proximate to
P4, Py it is the only vertex proximate to P,_4 and

v(Pk) =v(P1) —2,v(P;)) =v(Py) —1fori=2,...,k —1when
k> 2.
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Proof <« - condition (5)

There exists Py, Py, ..., Px € D (k > 2) such that, P; is free,
Py,...,Px— Py, P — Pi_yfori=2,... k, P itis the only
vertex proximate to Py, Py is the only vertex proximate to Px_1
and Z/(Pk) = V(P1) -2, IJ(P,') = I/(P1) —1fori= 2,.. .,k— 1
when k > 2.
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Proof <= - condition (5)

1
\ .Po ‘\ O \
v—1 v—1 v—1 v—1
*p; *p T *P_1 *P

[m] = =
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@ Let assume that A"(fy) = 1.
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Proof =

@ Let assume that \'"(fy) = 1.

@ Then there exists a linear deformation {fs} such that its
generic elements has a minimal diagram (E, \) and (D, v)
is linear adjacent to (E, \).
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Proof =

@ Let assume that \'"(fy) = 1.

@ Then there exists a linear deformation {fs} such that its
generic elements has a minimal diagram (E, \) and (D, v)
is linear adjacent to (E, \).

@ Moreover u(E, \) = (D, v) — 1.
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Proof =

@ Let assume that \'"(fy) = 1.

@ Then there exists a linear deformation {fs} such that its
generic elements has a minimal diagram (E, \) and (D, v)
is linear adjacent to (E, \).

@ Moreover u(E, \) = (D, v) — 1.

@ We will show that if (D, v) does not satisfy the conditions
(1) — (3) then it has to satisfy either condition (4) or (5).
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Proof =

@ Let (D’,v') be a madification of (D, v) such that for two
appropriately chosen Py, S € D:
e D=D
e V(P)=v(P)for Pe D\ {Py,S}
o V(P)=v(P)—1,/(S)=v(S)+1.
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Proof =

@ Let (D’,v') be a madification of (D, v) such that for two
appropriately chosen Py, S € D:
e D=D
e V(P)=v(P)for Pe D\ {Py,S}
o V(P)=v(P)—1,/(S)=v(S)+1.

e (D',V')is linear adjacent to (E, \).
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Proof =

@ Let (D’,v') be a madification of (D, v) such that for two
appropriately chosen Py, S € D:
e D=D
e V(P)=v(P)for Pe D\ {Py, S}
o V(P)=v(P)—1,/(S)=v(S)+1.
e (D',V')is linear adjacent to (E, \).
@ Since the Milnor number is upper semi-continuous we get:
u((D,v)) =1 = p((E, N) < p((D', 1)) <
w(D,v)) =2(w(P) = v(S))+2+m — D

(
(
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Proof =

@ Let (D’,v') be a madification of (D, v) such that for two
appropriately chosen Py, S € D:
e D=D
e V(P)=v(P)for Pe D\ {Py, S}
o V(P)=v(P)—1,/(S)=v(S)+1.
e (D',V')is linear adjacent to (E, \).
@ Since the Milnor number is upper semi-continuous we get:
u((D,v)) =1 = p((E, N) < p((D', 1)) <
u((D,v)) —2(v(P) —v(S))+2+rp—rp.
@ It meansthat1 > 2(v(P) —v(S))—2—rp+ rp.

(
(
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Proof =

@ Let (D’,v') be a madification of (D, v) such that for two
appropriately chosen Py, S € D:
e D=D
e V(P)=v(P)for Pe D\ {Py, S}
o V(P)=v(P)—1,/(S)=v(S)+1.
e (D',V')is linear adjacent to (E, \).
@ Since the Milnor number is upper semi-continuous we get:
u((D,v)) =1 = p((E, N)) < p((D', V) <
u((D,v)) —2(v(P) —v(S))+2+rp—rp.
@ It meansthat1 > 2(v(P) —v(S))—2—rp+ rp.
@ This condition is only true when (D, v) satisfies the
condition (4) or (5).

(
(
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The linear deformation - condition (4)

Let fo(x,y) = y(x + y* 1) (X% + y?¥), for k > 2.
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The linear deformation - condition (4)

Let fo(x,y) = y(x + y* 1) (X% + y?¥), for k > 2.
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The linear deformation - condition (4)

Then the deformation is
fs(X,y) = y(x + y*=1)(x% + y2K) + sx(x? + y?K) =
(Y(x + y*=1) + sx)(x2 4 y2K).
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The linear deformation - condition (4)

Then the deformation is
fs(X,y) = y(x + y*=1)(x% + y2K) + sx(x? + y?K) =
(Y(x + y*=1) + sx)(x2 4 y2K).

~ *P \ /.
g//

ol
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The conditions (1) — (5) are not necessary conditions for
AMfy) = 1.
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Example

The conditions (1) — (5) are not necessary conditions for
Afy) = 1.

Let fo(x, y) = x* + y8. Then:
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Example

The conditions (1) — (5) are not necessary conditions for
Afy) = 1.

Let fy(x, y) = x* + y5. Then:
o H(fO) = 15.
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Example

The conditions (1) — (5) are not necessary conditions for
Afy) = 1.

Let fo(x, y) = x* + y8. Then:
@ u(fy) =15.
@ Its minimal Enriques diagram doesn’t satisfy any condition
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Example

The conditions (1) — (5) are not necessary conditions for
Afy) = 1.

Let fo(x, y) = x* + y8. Then:
@ u(fy) =15.
@ Its minimal Enriques diagram doesn’t satisfy any condition

@ Let fs(x,y) = x* + (¥? + sx)? (nonlinear deformation) —
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Example

The conditions (1) — (5) are not necessary conditions for
Afy) = 1.

Let fo(x, y) = x* + y8. Then:
@ u(fy) =15.
@ Its minimal Enriques diagram doesn’t satisfy any condition

@ Let fs(x,y) = x* + (¥? + sx)? (nonlinear deformation) —
@ It means that \(fy) = 1.
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Thank you for your
attention!
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