Extension of the Gusein-Zade Theorem on the jumps equal to 1 of the Milnor number in deformations of curve plane singularities

Aleksandra Zakrzewska

Faculty of Mathematics and Computer Science University of Lodz

GKLW Seminar in Singularity Theory March 2023

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

Deformation of the singularity

Let $f_0 : (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ be an isolated singularity.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の () 2/42

Let $\mathit{f}_0: \left(\mathbb{C}^2, 0\right) \to (\mathbb{C}, 0)$ be an isolated singularity.

Definition

A deformation of the singularity f_0 is the germ of a holomorphic function $f = f(s, z) : (\mathbb{C} \times \mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ such that

•
$$f(0,z) = f_0(z)$$

2
$$f(s, 0) = 0.$$

Let $\mathit{f}_0: \left(\mathbb{C}^2, 0\right) \to (\mathbb{C}, 0)$ be an isolated singularity.

Definition

A deformation of the singularity f_0 is the germ of a holomorphic function $f = f(s, z) : (\mathbb{C} \times \mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ such that

•
$$f(0,z) = f_0(z)$$

2 f(s, 0) = 0.

The deformation f(s, z) of the singularity f_0 will also be treated as a family (f_s) of functions germs, taking $f_s(z) := f(s, z)$.

Definition

Since f_0 is an isolated singularity, f_s for sufficiently small *s* also has isolated singularities near 0. By the above for sufficiently small *s* one can define μ_s

$$\mu_{\boldsymbol{s}} := \mu(f_{\boldsymbol{s}}) = \dim_{\mathbb{C}} \mathcal{O}_2/(\nabla f_{\boldsymbol{s}}),$$

called the **Milnor number of** f_s , where \mathcal{O}_2 is the ring of the holomorphic function germs at 0, and (∇f_s) is the ideal in \mathcal{O}_2 generated by ∇f_s .

<ロ> <同> < 三> < 三> < 三> < 三</p>

Since the Milnor number is upper semi-continuous in the Zariski topology in families of singularities, there exists an open neighbourhood S of the point 0 such that

•
$$\mu_s = \text{const.}$$
 for $s \in S \setminus \{0\}$,

2)
$$\mu_0 \ge \mu_s$$
 for $s \in S$.

Since the Milnor number is upper semi-continuous in the Zariski topology in families of singularities, there exists an open neighbourhood S of the point 0 such that

$$) \ \mu_{\boldsymbol{s}} = \text{const. for } \boldsymbol{s} \in \boldsymbol{S} \setminus \{\boldsymbol{0}\},$$

2)
$$\mu_0 \ge \mu_s$$
 for $s \in S$.

Definition

The constant difference $\mu_0 - \mu_s$ (for $s \in S \setminus \{0\}$) will be called the jump of the deformation (f_s) and denoted by $\lambda((f_s))$. The smallest non-zero value among all the jumps of deformations of the singularity f_0 will be called the jump of the Milnor number of the singularity f_0 and denoted by $\lambda(f_0)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

• Let
$$f_0(x, y) = x^6 + y^6$$
.

< □ > < @ > < ≧ > < ≧ > E の < ♡ 5/42

• Let
$$f_0(x, y) = x^6 + y^6$$
.

• Its Milnor number is $\mu(f_0) = 25$.

<□ > < □ > < □ > < 三 > < 三 > ○ < ♡ < < 5/42

• Let
$$f_0(x, y) = x^6 + y^6$$
.

- Its Milnor number is $\mu(f_0) = 25$.
- To calculate its jump of the Milnor number we have to consider all its deformations.

• Let
$$f_0(x, y) = x^6 + y^6$$
.

- Its Milnor number is $\mu(f_0) = 25$.
- To calculate its jump of the Milnor number we have to consider all its deformations.
- For example:

•
$$f_s^1(x,y) = x^6 + y^6 + s(x + \varepsilon y)^5$$
, where $\varepsilon^6 = -1$,

•
$$f_s^2(x,y) = x^6 + (y^2 + sx)^3$$
.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ ○ ●

• Let
$$f_0(x, y) = x^6 + y^6$$
.

- Its Milnor number is $\mu(f_0) = 25$.
- To calculate its jump of the Milnor number we have to consider all its deformations.
- For example:

•
$$f_{5}^{1}(x, y) = x^{6} + y^{6} + s(x + \varepsilon y)^{5}$$
, where $\varepsilon^{6} = -1$,

•
$$f_s^2(x,y) = x^6 + (y^2 + sx)^3$$

• Their Milnor numbers: $\mu((f_s^1)) = 21$, $\mu((f_s^2)) = 22$.

• Let
$$f_0(x, y) = x^6 + y^6$$
.

- Its Milnor number is $\mu(f_0) = 25$.
- To calculate its jump of the Milnor number we have to consider all its deformations.
- For example:

•
$$f_s^1(x, y) = x^6 + y^6 + s(x + \varepsilon y)^5$$
, where $\varepsilon^6 = -1$,
• $f_s^2(x, y) = x^6 + (y^2 + sx)^3$.

- Their Milnor numbers: $\mu((f_s^1)) = 21$, $\mu((f_s^2)) = 22$.
- In work [2] Brzostowski, Krasinski and Walewska proved that f²_s realizes the jump of the Milnor number, so λ(f₀) = 3.

We will consider the jump of the Milnor for all **linear deformations** of f_0 i.e. deformations of the form $f_s = f_0 + sg$, where g is a holomorphic function in the neighbourhood of 0 such that g(0) = 0. The smallest non-zero value among all the jumps of linear deformations of the singularity f_0 will be denoted $\lambda^{lin}(f_0)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで、

Singularities with the jump of Milnor number 1

In 1993 Gusein-Zade ([4]) proved that:

Theorem

If for a singularity f_0 there exists a maximal exceptional divisor in the resolution process of the singularity f_0 which intersects no more than three other components of the total preimage of the curve $f_0 = 0$, then $\lambda(f_0) = 1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ● ●

In 1993 Gusein-Zade ([4]) proved that:

Theorem

If for a singularity f_0 there exists a maximal exceptional divisor in the resolution process of the singularity f_0 which intersects no more than three other components of the total preimage of the curve $f_0 = 0$, then $\lambda(f_0) = 1$.

In this work I will present additional conditions for a singularity f₀ that λ(f₀) = 1.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つくぐ

In 1993 Gusein-Zade ([4]) proved that:

Theorem

If for a singularity f_0 there exists a maximal exceptional divisor in the resolution process of the singularity f_0 which intersects no more than three other components of the total preimage of the curve $f_0 = 0$, then $\lambda(f_0) = 1$.

- In this work I will present additional conditions for a singularity f₀ that λ(f₀) = 1.
- These conditions (with those of Gusein-Zade) are the sufficient and necessary conditions for that λ^{lin}(f₀) = 1.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つくぐ

If there exists a maximal exceptional divisor (E) which intersects no more than three other components of the total preimage it means that we have one of below situation:

Enriques diagram

To get the main result we use the **Enriques diagrams** and a result of M. Alberich-Carraminñana and J.Roé.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ ○ ●

Enriques diagram

To get the main result we use the **Enriques diagrams** and a result of M. Alberich-Carraminñana and J.Roé.

To any singularity we can assign its Enriques diagram D which represents the whole resolution process of this singularity. It is a finite graph with two types of edges and distinguished root R.

More details in E. Casas-Alvero *Singularities of Plane Curve* ([3]).

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

The proximity relation between vertices in above example is defined as follows:

 $R \rightarrow S, T \rightarrow R, T \rightarrow S, U \rightarrow T$

▲□ → ▲ 三 → ▲ 三 → りくぐ

The vertex can be one of three types.

To an Enriques diagram D we assign the weight function
ν : D → Z₊.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 - の Q (2) 42

- To an Enriques diagram *D* we assign the weight function $\nu : D \rightarrow \mathbb{Z}_+$.
- The number ν(P) represents the order of successive strict transforms of f₀ at P.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 12/42

- To an Enriques diagram *D* we assign the weight function $\nu : D \rightarrow \mathbb{Z}_+$.
- The number ν(P) represents the order of successive strict transforms of f₀ at P.
- The pair (D, ν) will be called the weighted Enriques diagram.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 12/42

- To an Enriques diagram *D* we assign the weight function $\nu : D \rightarrow \mathbb{Z}_+$.
- The number ν(P) represents the order of successive strict transforms of f₀ at P.
- The pair (D, ν) will be called the weighted Enriques diagram.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 12/42

The Enriques diagram of this singularity:

Minimal diagrams

If we remove all leaves from an Enriques diagram of the singularity (D, ν) we get a **minimal Enriques diagram**.

Minimal diagrams

If we remove all leaves from an Enriques diagram of the singularity (D, ν) we get a **minimal Enriques diagram**.

Enriques diagram of $f_0 = y(x^4 + y^5)$ and its minimal diagram (black).

Theorem of M. Alberich-Carramiñana and J.Roé

- M. Alberich-Carramiñana and J.Roé in their work ([1]):
 - gave a necessary and sufficient condition for two Enriques diagrams of singularities to be linear adjacent. This a numeric condition that can be checked for any two diagrams;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 16/42

- M. Alberich-Carramiñana and J.Roé in their work ([1]):
 - gave a necessary and sufficient condition for two Enriques diagrams of singularities to be linear adjacent. This a numeric condition that can be checked for any two diagrams;
 - proved that (*D̃*, *ṽ*) is linear adjacent to (*D*, *ν*) if and only if for every singularity *f*₀ with the Enriques diagram (*D̃*, *ṽ*) there exists a linear deformation (*f_s*) such that the Enriques diagram of a generic element *f_s* is (*D*, *ν*).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 16/42

Corollary (from Theorem of M. Alberich-Carramiñana and J.Roé)

- To check if one singularity is linear deformation of another it is sufficient to compare their Enriques diagrams (check if they are in some numeric relation.)
- Linear adjacency depends only on topological types of singularities.
- **3** $\lambda^{lin}(f_0)$ is a topological invariant.

Gusein-Zade ([4]) proved that if for a singularity f_0 there exists a maximal exceptional divisor which intersects no more than three other components of the total preimage of the curve $f_0 = 0$, then $\lambda(f_0) = 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 18/42

Gusein-Zade Theorem

< □ > < @ > < E > < E > E の < 0 19/42

Gusein-Zade Theorem

Gusein-Zade Theorem

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● の へ ○ 21/42

Theorem (Gusein-Zade)

Let $f_0 : \mathbb{C}^2 \to \mathbb{C}$ be a singularity and (D, ν) its minimal diagram. If one of below conditions is true:

- 1 the diagram D contains only root with weight 2,
- 2 there exists a leaf $P \in D$ such that P is satellite with weight 1,

3 there exists a leaf $P \in D$ such that P is free with weight 2, then $\lambda(f_0) = \lambda^{lin}(f_0) = 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 22/42

Theorem

Let $f_0 : \mathbb{C}^2 \to \mathbb{C}$ be a singularity and (D, ν) its minimal diagram. If one of below conditions is true:

4 there exists $P_1, \ldots, P_k \in D$ ($k \ge 2$) such that, P_1 is the root, $P_i \rightarrow P_{i-1}$ for $i = 2, \ldots, k$, P_2 it is the only vertex proximate to P_1 , P_k it is the only vertex proximate to P_{k-1} and $\nu(P_k) = \nu(P_1) - 2$, $\nu(P_i) = \nu(P_1) - 1$ for $i = 2, \ldots, k - 1$ when k > 2.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ● ● の ♥ 23/42

Additional conditions for the jump of Milnor number 1

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

≣ ∽੧< ~ 24/42

Additional conditions for the jump of Milnor number 1

Theorem

5 there exists $P_0, P_1, \ldots, P_k \in D$ ($k \ge 2$) such that, P_1 is free, $P_1, \ldots, P_k \rightarrow P_0, P_i \rightarrow P_{i-1}$ for $i = 2, \ldots, k$, P_2 it is the only vertex proximate to P_1, P_k is the only vertex proximate to P_{k-1} and $\nu(P_k) = \nu(P_1) - 2, \nu(P_i) = \nu(P_1) - 1$ for $i = 2, \ldots, k - 1$ when k > 2. then $\lambda(f_0) = \lambda^{lin}(f_0) = 1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ = の 9 ℃ 25/42

Additional conditions for the jump of Milnor number 1

E ∽ < [⊙] 26/42

> < ≥ > < ≥ >

Characterization of singularities with the linear jump of Milnor 1

Main theorem

Theorem

Let $f_0 : \mathbb{C}^2 \to \mathbb{C}$ be a singularity and (D, ν) its minimal diagram. We have $\lambda^{lin}(f_0) = 1$ if and only if one of the (1) - (5) condition is satisfied.

For the diagram (D, ν) of f_0 we will construct the diagram (E, λ) such that :

• (D, ν) is linear adjacent to (E, λ)

•
$$\mu((E,\lambda)) = \mu((D,\nu)) - 1.$$

For the diagram (D, ν) of f_0 we will construct the diagram (E, λ) such that :

• (D, ν) is linear adjacent to (E, λ)

•
$$\mu((E, \lambda)) = \mu((D, \nu)) - 1.$$

Then there exists a linear deformation that its generic element has the Enriques diagram (E, λ) .

The diagram *D* contains only root with weight 2.

$$(D,\nu) \bullet_L^2$$

<□▶ <□▶ < 臣▶ < 臣▶ < 臣▶ 三 の Q (* 29/42)

The diagram *D* contains only root with weight 2.

$$(D,\nu) \bullet_L^2$$

$$(E,\lambda) \bullet^1_L$$

Aleksandra Zakrzewska Extension of the Gusein-Zade Theorem

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 - のへで - 29/42

There exists a leaf $P \in D$ such that P is satellite with weight 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 30/42

There exists a leaf $P \in D$ such that P is satellite with weight 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 30/42

Proof \leftarrow - condition (3)

There exists a leaf $P \in D$ such that P is free with weight 2.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 31/42

Proof \Leftarrow - condition (3)

There exists a leaf $P \in D$ such that P is free with weight 2.

Aleksandra Zakrzewska Extension of the Gusein-Zade Theorem

Proof \Leftarrow - condition (4)

There exists $P_1, \ldots, P_k \in D$ ($k \ge 2$) such that, P_1 is the root, $P_i \rightarrow P_{i-1}$ for $i = 2, \ldots, k$, P_2 it is the only vertex proximate to P_1, P_k it is the only vertex proximate to P_{k-1} and $\nu(P_k) = \nu(P_1) - 2, \nu(P_i) = \nu(P_1) - 1$ for $i = 2, \ldots, k - 1$ when k > 2.

Aleksandra Zakrzewska

Extension of the Gusein-Zade Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 32/42

Proof \leftarrow - condition (4)

Aleksandra Zakrzewska Extension of the Gusein-Zade Theorem

There exists $P_0, P_1, \ldots, P_k \in D$ ($k \ge 2$) such that, P_1 is free, $P_1, \ldots, P_k \to P_0, P_i \to P_{i-1}$ for $i = 2, \ldots, k$, P_2 it is the only vertex proximate to P_1, P_k is the only vertex proximate to P_{k-1} and $\nu(P_k) = \nu(P_1) - 2, \nu(P_i) = \nu(P_1) - 1$ for $i = 2, \ldots, k - 1$ when k > 2.

Aleksandra Zakrzewska Extension of the Gusein-Zade Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - の�� 34/42

Proof \Leftarrow - condition (5)

Aleksandra Zakrzewska Extension of the Gusein-Zade Theorem

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ 35/42

• Let assume that $\lambda^{lin}(f_0) = 1$.

- Let assume that $\lambda^{lin}(f_0) = 1$.
- Then there exists a linear deformation {*f_s*} such that its generic elements has a minimal diagram (*E*, λ) and (*D*, ν) is linear adjacent to (*E*, λ).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�♡ 36/42

- Let assume that $\lambda^{lin}(f_0) = 1$.
- Then there exists a linear deformation {*f_s*} such that its generic elements has a minimal diagram (*E*, λ) and (*D*, ν) is linear adjacent to (*E*, λ).

• Moreover
$$\mu(E,\lambda) = \mu(D,\nu) - 1$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 36/42

- Let assume that $\lambda^{lin}(f_0) = 1$.
- Then there exists a linear deformation {*f_s*} such that its generic elements has a minimal diagram (*E*, λ) and (*D*, ν) is linear adjacent to (*E*, λ).
- Moreover $\mu(E, \lambda) = \mu(D, \nu) 1$.
- We will show that if (D, ν) does not satisfy the conditions
 (1) (3) then it has to satisfy either condition (4) or (5).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 36/42

 Let (D', ν') be a modification of (D, ν) such that for two appropriately chosen P₁, S ∈ D:

•
$$\nu'(P) = \nu(P)$$
 for $P \in D \setminus \{P_1, S\}$

•
$$\nu'(P_1) = \nu(P) - 1, \, \nu'(S) = \nu(S) + 1.$$

<□▶ <□▶ < 臣▶ < 臣▶ < 臣▶ 三 の Q (* 37/42)

- Let (D', ν') be a modification of (D, ν) such that for two appropriately chosen P₁, S ∈ D:
 - *D* = *D*′

•
$$\nu'(P) = \nu(P)$$
 for $P \in D \setminus \{P_1, S\}$

- $\nu'(P_1) = \nu(P) 1, \, \nu'(S) = \nu(S) + 1.$
- (D', ν') is linear adjacent to (E, λ) .

<□▶ <□▶ < 臣▶ < 臣▶ < 臣▶ 三 の Q (* 37/42)

- Let (D', ν') be a modification of (D, ν) such that for two appropriately chosen P₁, S ∈ D:
 - *D* = *D*′

•
$$\nu'(P) = \nu(P)$$
 for $P \in D \setminus \{P_1, S\}$
• $\nu'(P_1) = \nu(P) - 1, \nu'(S) = \nu(S) + 1.$

- (D', ν') is linear adjacent to (E, λ) .
- Since the Milnor number is upper semi-continuous we get: $\mu((D,\nu)) - 1 = \mu((E,\lambda)) \le \mu((D',\nu')) \le$ $\mu((D,\nu)) - 2(\nu(P) - \nu(S)) + 2 + r_D - r_{D'}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�♡ 37/42

- Let (D', ν') be a modification of (D, ν) such that for two appropriately chosen P₁, S ∈ D:
 - *D* = *D*′

•
$$\nu'(P) = \nu(P)$$
 for $P \in D \setminus \{P_1, S\}$
• $\nu'(P_1) = \nu(P) - 1, \nu'(S) = \nu(S) + 1.$

- (D', ν') is linear adjacent to (E, λ) .
- Since the Milnor number is upper semi-continuous we get: $\mu((D,\nu)) - 1 = \mu((E,\lambda)) \le \mu((D',\nu')) \le$ $\mu((D,\nu)) - 2(\nu(P) - \nu(S)) + 2 + r_D - r_{D'}.$
- It means that $1 \ge 2(\nu(P) \nu(S)) 2 r_D + r_{D'}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�♡ 37/42

- Let (D', ν') be a modification of (D, ν) such that for two appropriately chosen P₁, S ∈ D:
 - *D* = *D*′

•
$$\nu'(P) = \nu(P)$$
 for $P \in D \setminus \{P_1, S\}$
• $\nu'(P_1) = \nu(P) - 1, \nu'(S) = \nu(S) + 1.$

- (D', ν') is linear adjacent to (E, λ) .
- Since the Milnor number is upper semi-continuous we get: $\mu((D,\nu)) - 1 = \mu((E,\lambda)) \le \mu((D',\nu')) \le$ $\mu((D,\nu)) - 2(\nu(P) - \nu(S)) + 2 + r_D - r_{D'}.$
- It means that $1 \ge 2(\nu(P) \nu(S)) 2 r_D + r_{D'}$.
- This condition is only true when (D, ν) satisfies the condition (4) or (5).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�♡ 37/42

Example

Let
$$f_0(x, y) = y(x + y^{k-1})(x^2 + y^{2k})$$
, for $k \ge 2$.

Aleksandra Zakrzewska Extension of the Gusein-Zade Theorem

Aleksandra Zakrzewska Extension of the Gusein-Zade Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 38/42

Example

Then the deformation is $f_s(x, y) = y(x + y^{k-1})(x^2 + y^{2k}) + sx(x^2 + y^{2k}) = (y(x + y^{k-1}) + sx)(x^2 + y^{2k}).$

Aleksandra Zakrzewska Extension of the Gusein-Zade Theorem

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

39/42

Example

Aleksandra Zakrzewska

Extension of the Gusein-Zade Theorem

3

39/42

The conditions (1) - (5) are not necessary conditions for $\lambda(f_0) = 1$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ◆ 40/42

The conditions (1) - (5) are not necessary conditions for $\lambda(f_0) = 1$.

Example

Let $f_0(x, y) = x^4 + y^6$. Then:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 の � � 40/42

The conditions (1) - (5) are not necessary conditions for $\lambda(f_0) = 1$.

Example

Let $f_0(x, y) = x^4 + y^6$. Then:

•
$$\mu(f_0) = 15.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 の � � 40/42

The conditions (1) - (5) are not necessary conditions for $\lambda(f_0) = 1$.

Example

Let $f_0(x, y) = x^4 + y^6$. Then:

•
$$\mu(f_0) = 15.$$

Its minimal Enriques diagram doesn't satisfy any condition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 40/42
Example

The conditions (1) - (5) are not necessary conditions for $\lambda(f_0) = 1$.

Example

Let $f_0(x, y) = x^4 + y^6$. Then:

•
$$\mu(f_0) = 15.$$

Its minimal Enriques diagram doesn't satisfy any condition

(1) - (5).
$$(1)^{-4}$$

• Let $f_s(x, y) = x^4 + (y^2 + sx)^3$ (nonlinear deformation) – $\mu(f_s) = 14$.

<□▶ <□▶ < 臣▶ < 臣▶ = うくで 40/42

Example

The conditions (1) - (5) are not necessary conditions for $\lambda(f_0) = 1$.

Example

Let $f_0(x, y) = x^4 + y^6$. Then:

•
$$\mu(f_0) = 15.$$

Its minimal Enriques diagram doesn't satisfy any condition

(1) - (5).
$$\begin{pmatrix} \bullet^2 \\ | \\ \bullet^4 \\ \bullet^2 \end{pmatrix}$$

- Let $f_s(x, y) = x^4 + (y^2 + sx)^3$ (nonlinear deformation) $\mu(f_s) = 14$.
- It means that $\lambda(f_0) = 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 40/42

Thank you for your attention!

Aleksandra Zakrzewska Extension of the Gusein-Zade Theorem

◆□ → ◆□ → ◆ = → ◆ = ・ ○ へ ○ 41/42

- M. Alberich-Carramiñana, J.Roé: *Enriques Diagrams and Adjacency of Planar Curve Singularities*, Canad. J. Math. Vol 57(1), 2005.
- S. Brzostowski, T. Krasiński, J. Walewska: Milnor numbers in deformations of homogeneous singularities Bulletin des Sciences Mathématiques, (168), 2021.
 - E. Casas-Alvero: Singularities of Plane Curve, Cambridge University Press, 2000.
- S. Gusein-Zade: On singularities from which an A_1 can be split off., Funct. Anal. Appl., 1993.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 42/42