Patryk Pagacz

Let ABC be a triangle and $A_1 \in BC$, $B_1 \in AC$, $C_1 \in AB$ be such that $AA_1 \cap BB_1 \cap CC_1 \neq \emptyset$. Let us denote $AA_1 \cap BB_1 \cap CC_1 = M$.

Problem 1 Let ABC be a equilateral triangle. Prove that:

$$A_1B_1 \cdot B_1C_1 \cdot C_1A_1 \ge A_1B \cdot B_1C \cdot C_1A.$$

Problem 2 Let us consider a square of area 1 with n points inside. Prove that one can number this points by P_1, P_2, \ldots, P_n such that:

$$|P_1P_2|^2 + |P_2P_3|^2 + \dots + |P_nP_1|^2 \le 4.$$

Problem 3 Let ABCDEF be a hexagon such that

$$AB = BC, \quad CD = DE, \quad EF = FA.$$

Prove that

$$\frac{BC}{BE} + \frac{DE}{DA} + \frac{FA}{FC} \ge \frac{3}{2}$$

Problem 4 Let ABCDEF be a hexagon such that

$$\angle ABC = \angle BCD = \angle CDE = \angle DEF = \angle EFA = \angle FAB$$

Prove that

$$AB + BC = DE + EF.$$

Problem 5 Let A, B, C, D, E lie on a semicircle with radius 1. Prove that

$$AB^{2} + BC^{2} + CD^{2} + DE^{2} + AB \cdot BC \cdot CD + BC \cdot CD \cdot DE < 4.$$

Problem 6 Let A_1, A_2, \ldots, A_n be points on a circle (with radius 1 and center O) such that

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = 0$$

Prove that for any point B

$$A_1B + A_2B + \dots A_nB \ge n.$$

- **Problem 7** Every point on the plane has been colored by blue or yellow. Prove that there is a equilateral triangle with all vertices colored by the same colour.
- **Problem 8** Every point in the space has been colored by blue or yellow. Prove that there is a square with sides equal 1, such that has 0,1 or 4 yellow vertices.
- **Problem 9** Let $\Omega_1 \cup \Omega_2 \cup \Omega_3 = \mathbb{C}$ such that $\Omega_i \cap \Omega_j = \emptyset$, for $i \neq j$. Prove that at least one set Ω_i has the following property:

for any d > 0 there are $x, y \in \Omega_i$ such that |x - y| = d.

Problem 10 It is possible to find two tetrahedrons Γ_1, Γ_2 such that $\Gamma_1 \subset \Gamma_2$, but the sum of lengths of edges of Γ_1 is greater than the sum of lengths of edges of Γ_2 .

Problem 11 In a disc (with radius 1) there are 64 points. Prove that 10 of them lies in some disc with radius $\frac{1}{2}$.

Problem 12 In each square of the chessboard 2021×2021 there is a number with modulus less than 1. Moreover, the sum of numbers from any square 2×2 is equal 0. Show that the sum of all numbers is less than 2021.

Problem 13 Can we cover a rectangle using 100 balls with radius 1, if we know that we can do that by using 25 balls with radius 2.

Problem 14 The three canonical projections of some convex set $\Gamma \subset \mathbb{R}^3$ are circles with radius 1. Is Γ a ball?