Patryk Pagacz

April 21, 2022

Let $A B C$ be a triangle and $A_{1} \in B C, B_{1} \in A C, C_{1} \in A B$ be such that $A A_{1} \cap B B_{1} \cap C C_{1} \neq \emptyset$. Let us denote $A A_{1} \cap B B_{1} \cap C C_{1}=M$.

Problem 1 Let ABC be a equilateral triangle. Prove that:

$$
A_{1} B_{1} \cdot B_{1} C_{1} \cdot C_{1} A_{1} \geq A_{1} B \cdot B_{1} C \cdot C_{1} A .
$$

Problem 2 Let us consider a square of area 1 with n points inside. Prove that one can number this points by $P_{1}, P_{2}, \ldots, P_{n}$ such that:

$$
\left|P_{1} P_{2}\right|^{2}+\left|P_{2} P_{3}\right|^{2}+\cdots+\left|P_{n} P_{1}\right|^{2} \leq 4 .
$$

Problem 3 Let ABCDEF be a hexagon such that

$$
A B=B C, \quad C D=D E, \quad E F=F A .
$$

Prove that

$$
\frac{B C}{B E}+\frac{D E}{D A}+\frac{F A}{F C} \geq \frac{3}{2} .
$$

Problem 4 Let $A B C D E F$ be a hexagon such that

$$
\angle A B C=\angle B C D=\angle C D E=\angle D E F=\angle E F A=\angle F A B .
$$

Prove that

$$
A B+B C=D E+E F .
$$

Problem 5 Let A, B, C, D, E lie on a semicircle with radius 1.
Prove that

$$
A B^{2}+B C^{2}+C D^{2}+D E^{2}+A B \cdot B C \cdot C D+B C \cdot C D \cdot D E<4 .
$$

Problem 6 Let $A_{1}, A_{2}, \ldots A_{n}$ be points on a circle (with radius 1 and center O) such that

$$
\overrightarrow{O A_{1}}+\overrightarrow{O A_{2}}+\cdots+\overrightarrow{O A_{n}}=0
$$

Prove that for any point B

$$
A_{1} B+A_{2} B+\ldots A_{n} B \geq n .
$$

Problem 7 Every point on the plane has been colored by blue or yellow.
Prove that there is a equilateral triangle with all vertices colored by the same colour.
Problem 8 Every point in the space has been colored by blue or yellow.
Prove that there is a square with sides equal 1, such that has 0,1 or 4 yellow vertices.
Problem 9 Let $\Omega_{1} \cup \Omega_{2} \cup \Omega_{3}=\mathbb{C}$ such that $\Omega_{i} \cap \Omega_{j}=\emptyset$, for $i \neq j$.
Prove that at least one set Ω_{i} has the following property:
for any $d>0$ there are $x, y \in \Omega_{i}$ such that $|x-y|=d$.
Problem 10 It is possible to find two tetrahedrons Γ_{1}, Γ_{2} such that $\Gamma_{1} \subset \Gamma_{2}$, but the sum of lengths of edges of Γ_{1} is greater than the sum of lengths of edges of Γ_{2}.

Problem 11 In a disc (with radius 1) there are 64 points. Prove that 10 of them lies in some disc with radius $\frac{1}{2}$.

Problem 12 In each square of the chessboard 2021×2021 there is a number with modulus less than 1. Moreover, the sum of numbers from any square 2×2 is equal 0 . Show that the sum of all numbers is less than 2021.

Problem 13 Can we cover a rectangle using 100 balls with radius 1 , if we know that we can do that by using 25 balls with radius 2 .

Problem 14 The three canonical projections of some convex set $\Gamma \subset \mathbb{R}^{3}$ are circles with radius 1 . Is Γ a ball?

