Contents

1	Oth	er topological constructions of contact structures on 3-dimens	ional
	mar	hifolds	1
	1.1	Branchel covers	1
	1.2	Open books	1

1 Other topological constructions of contact structures on 3-dimensional manifolds

1.1 Branchel covers

Theorem 1 (Hilden, Montesinos, 1976). Let M be a closed, connected, orientable 3-dimensional manifold. Then there exists a knot $k \subset S^3$ and a map $p: M \to S^3$ with the following properties:

- $p\Big|_{M\setminus p^{-1}(k)}: M\setminus p^{-1}(k) \to S^3\setminus k \text{ is a smooth 3-fold covering,}$
- $p^{-1}(k) = k_1 \cup k_2$,
- p is a diffeomorphism of a neighbourhood of k_1 onto a neighbourhood of k,
- in suitable coordinates (θ, r, φ) on neighbourhoods of k₁ and k₂ the map p is given by (θ, r, φ) → (θ, r, 2φ).

Remark 1. This map is not smooth along k_2 . Its smooth map would be given by $(\theta, r, \varphi) \mapsto (\theta, r, 2\varphi)$. For lifting of contact structure the non-smooth version is better.

2nd proof of Martinet theorem:

Proof. We may assume that k is transverse to ξ_{st} on S^3 and $\alpha = d\theta + r^2 d\varphi$ near k.

$$p: M \setminus k_2 \to S^3$$

is a local diffeomorphism. $p^*\alpha$ is a contact form on $M \setminus k_2$.

In a neighbourhood of k_2 we have (for r > 0) $p^* \alpha = d\theta + 2r^2 d\varphi$. This expression defines a smooth extension of $p^* \alpha$ over k_2 as a contact form. \Box

This proof is due to J. Gonzalo Pérez.

1.2 Open books

Definition 1 (Open book decomposition). A manifold M admits an open book decomposition (Σ, Φ) if there exists a compact, orientable surface Σ with $\partial \Sigma = S^1$ and a diffeomorphism $\Phi : \Sigma \to \Sigma$ equal to identity near $\partial \Sigma$, such that $M \simeq \Sigma(\Phi) \cup (\partial \Sigma \times D^2).$

Here $\Sigma(\Phi)$ is the mapping torus defined by: $\Sigma(\Phi) := \Sigma \times [0, 2\pi] / (x, 2\pi) \sim (\Phi(x), 0)$.

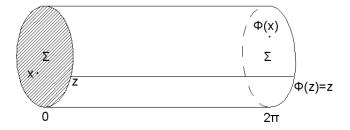


Figure 1: $\Phi\Big|_{\partial\Sigma} = id$, hence the identification near the boundary is as in a torus with cross section Σ . In general $\Phi\Big|_{\Sigma} \neq id$ so the identification might twist the inside of the torus. Note that $\partial(\Sigma(\Phi)) \simeq \partial\Sigma \times S^1$. To each S^1 in $\partial(\Sigma(\Phi))$ we glue in a disc D^2 .

The details of the construction of open book decomposition are depicted and discussed in Figures 1. and 2.

Theorem 2 (Alexander, 1923). Let M be a closed, connected, orientable 3-dimensional manifold. Then there exist an open book decomposition of M.

Theorem 3 (Thurston - Winkelnkemper). Every open book decomposition (Σ, Φ) supports a contact structure ξ_{Φ} .

The begining of the proof of Thurston - Winkelnkemper theorem: Let $\theta \in S^1$ be the coordinate along $\partial \Sigma$ (take Σ oriented from now on). Let s be a collar parameter of $\partial \Sigma$ in Σ , such that $\partial \Sigma = \{s = 0\}$ and s < 0 in the interior of Σ . Σ is a surface with a boundary, so there exists an exact area form $d\beta$. Let φ be a parameter in S^1 . Let us define a 1-form α by

$$\alpha = \beta + d\varphi.$$

Then

$$\begin{array}{rcl} d\alpha &=& d\beta, \\ \alpha \wedge d\alpha &=& d\beta \wedge d\varphi & \text{- area form on } \Sigma \times S^1 \end{array}$$

Such a form α is well defined on $\Sigma \times S^1$, so it is defined in the interior of the pages of the open book decomposition. Now we would like to glue it corectly to define it also near the binding.

By assumption Φ is equal to identity near $\partial \Sigma$, so we can choose the collar parameter s in such a way, that $\Phi = id$ on $[-2, 0] \times \partial \Sigma \subset \Sigma$. Recall that by assumption

$$M \simeq \Sigma(\Phi) \cup (\partial \Sigma \times D^2).$$

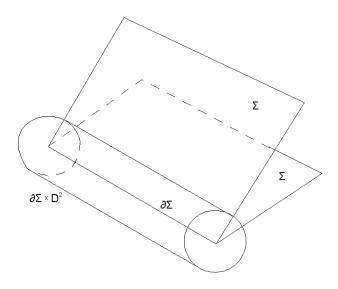


Figure 2: The pages of the open book are the identical copies of Σ , whereas the binding is the $\partial \Sigma = S^1$.

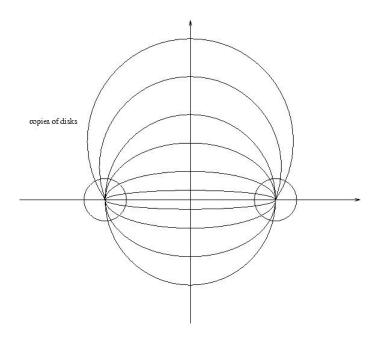


Figure 3: $S^3 = \mathbb{R}^3 \cup \{\infty\}$ admits an open book decomposition with page $\Sigma \simeq D^2$ and monodromy $\Phi = id_{D^2}$. The decomposition is obtained by gluing in disks/hemispheres into a circle S^1 . One can see the decomposition in the above figure - it is obtained by rotation around the vertical axis.

Recall that $\partial(\Sigma(\Phi)) \simeq \partial \Sigma \times S^1$, so near the boundary of $\partial(\Sigma(\Phi))$ we can define a mapping:

$$\begin{array}{ll} (s,\theta,\varphi) &\in & [0,1] \times \partial \Sigma \times S^1 = [0,1] \times \partial (\Sigma(\Phi)) \\ (s,\theta,\varphi) &\mapsto & (\theta,1-s,\varphi) \in \partial \Sigma \times D_2^2 = \partial \Sigma \times [0,2] \times S^1 \end{array}$$

Lemma 1. The set of 1-forms β on Σ with the following properties:

- $\beta = e^s d\theta$ on $\left[-\frac{3}{2}, 0\right] \times \partial \Sigma \subset \Sigma$
- $d\beta$ is an area form on Σ of total area $\int_{\Sigma} d\beta = 2\pi$

is non-empty and convex.

The proof of the lemma:

Proof. Let β_0 be a 1-form on Σ with $\beta_0 = e^s d\theta$ on $[-2,0] \times \Sigma$. Then

$$\int_{\Sigma} d\beta_0 = \int_{\partial \Sigma} \beta_0 = \{s = 0 \text{ on } \partial \Sigma\} = \int_{\partial \Sigma} d\theta = 2\pi.$$

Let ω be an area form on Σ with $\int_{\Sigma} \omega = 2\pi$ and $\omega = e^s ds \wedge d\theta$ on $[-2, 0] \times \partial \Sigma$. This choice of ω is always possible. Note that then

$$\int_{[-2,0]\times\partial\Sigma} e^s ds \wedge d\theta = 2\pi(1-e^{-2}) < 2\pi.$$

Moreover, $\int_{\Sigma} \omega - d\beta_0 = 0$ and $\omega - d\beta_0 \equiv 0$ on $[-2, 0] \times \partial \Sigma$. Extend $\omega - d\beta_0$ to a 2-form Ω on $\hat{\Sigma} = \Sigma \cup_{\partial \Sigma} D^2$ with $\Omega|_{D^2} \equiv 0$.

Since
$$\int_{\hat{\Sigma}} \Omega = 0$$
, by de Rham theorem $\Omega = d\hat{\beta}$.

Moreover, in view $d\hat{\beta} = \Omega$ and $\Omega|_{([-2,0]\times\partial\Sigma)\cup D^2} \equiv 0$, then by Poincaré lemma $\hat{\beta} = d\hat{f}$ on $([-2,0]\times\partial\Sigma)\cup D^2$.

We claim that

$$\beta = \beta_0 + \hat{\beta}|_{\Sigma} - d(\psi f)$$

is the desired form, where ψ is defined as on Figure 4.

For such defined β the following holds

$$d\beta = d\beta_0 + d\hat{\beta}\Big|_{\Sigma} = d\beta_0 + \Omega\Big|_{\Sigma} = d\beta_0 + \omega - d\beta_0 = \omega.$$

This proves that the desired set of 1-forms is non-empty.

Let us now prove the convexity. Suppose, β' is further 1-form with these properties, then it is easy to check that so is the form

$$(1-t)\beta + t\beta', \quad t \in [0,1].$$

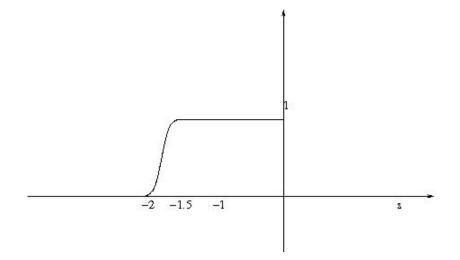


Figure 4: A ψ is a smooth function on \mathbb{R}_- , such that $\psi\Big|_{(-\infty,-2]} \equiv 0$ and $\psi\Big|_{[-1.5,0]} \equiv 1.$

The continuation of the proof of Thurston - Winkelnkemper theorem:

Proof. Let $\tilde{\beta}$ be a 1-form on Σ as just described in the lemma. Let μ be a smooth function on $[0, 2\pi]$, such that μ is 1 in the neighbourhood of 0 and μ is 0 in the neighbourhood of 2π .

Then $\beta = \mu(\varphi)\tilde{\beta} + (1 - \mu(\varphi))\Phi^*\tilde{\beta}$ is a 1-form on $\Sigma \times [0, 2\pi]$, whose restriction to each fibre $\Sigma \times \{\varphi\}$ has the properties as in the lemma. This induces a 1-form on $\Sigma(\Phi)$.

Note that $d\varphi$ on $\Sigma \times \mathbb{R}$ is invariant under $(x, \varphi) \sim (\Phi(x), \varphi - 2\pi)$, so it induces a 1-form on $\Sigma(\Phi)$.

Let us define

$$\alpha = \beta + Cd\varphi$$
 on $\Sigma(\Phi)$, for some $C \in \mathbb{R}_+$.

Let us calculate

$$\alpha \wedge d\alpha = (\beta + Cd\varphi) \wedge (d\beta) = \beta \wedge d\beta + Cd\varphi \wedge d\beta$$

Recall, that by the assumption $d\beta$ is an area form on each fibre $\Sigma \times \{\varphi\}$, so $d\varphi \wedge d\beta$ is an area form on $\Sigma(\Phi)$. This means that for large enough C > 0, $\alpha \wedge d\alpha > 0$ everywhere on $\Sigma(\Phi)$. This proves that α is indeed a contact form on $\Sigma(\Phi)$.

Ansatz:

On $\partial \Sigma \times D^2$ the 1-form α can be defined as follows

$$\alpha = h_1(r)d\theta + h_2(r)d\varphi.$$

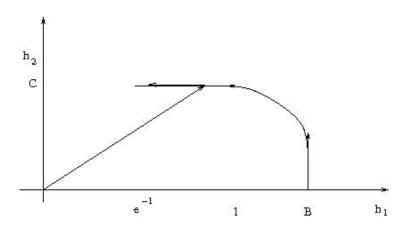


Figure 5: The figure depicts the algorithm for finding the solutions for functions h_1, h_2 . One first draws a curve which satisfies the boundary conditions and then interpolates as in Lutz twist.

for some functions h_1, h_2 , which have to satisfy the following boundary conditions:

$$h_1(r) = e^{1-r},$$
 $h_2(r) = C,$ on $\partial \Sigma \times D^2_{[1,2]}$
 $h_1(r) = B > 1,$ $h_2(r) = r^2.$

We define $D_{[1,2]}^2 = \{(r,\varphi) | r \in [1,2]\}$. Functions h_1, h_2 also have to satisfy

$$Det \left(\begin{array}{cc} h_1 & h_1' \\ h_2 & h_2' \end{array}\right) \neq 0.$$

The solution to this set of equations is depicted on Figure 5.

Teaser: It turns out that for a given manifold M there exists a contact structure (M, ξ) if and only if there exists an open book decomposition (Σ, Φ) of M.