Contents

1 Other topological constructions of contact structures on 3-dimensional manifolds1
1.1 Branchel covers 1
1.2 Open books 1

1 Other topological constructions of contact structures on 3-dimensional manifolds

1.1 Branchel covers

Theorem 1 (Hilden, Montesinos, 1976). Let M be a closed, connected, orientable 3-dimensional manifold. Then there exists a knot $k \subset S^{3}$ and a map $p: M \rightarrow S^{3}$ with the following properties:

- $\left.p\right|_{M \backslash p^{-1}(k)}: M \backslash p^{-1}(k) \rightarrow S^{3} \backslash k$ is a smooth 3-fold covering,
- $p^{-1}(k)=k_{1} \cup k_{2}$,
- p is a diffeomorphism of a neighbourhood of k_{1} onto a neighbourhood of k,
- in suitable coordinates (θ, r, φ) on neighbourhoods of k_{1} and k_{2} the map p is given by $(\theta, r, \varphi) \mapsto(\theta, r, 2 \varphi)$.

Remark 1. This map is not smooth along k_{2}. Its smooth map would be given by $(\theta, r, \varphi) \mapsto(\theta, r, 2 \varphi)$. For lifting of contact structure the non-smooth version is better.

2nd proof of Martinet theorem:
Proof. We may assume that k is transverse to $\xi_{s t}$ on S^{3} and $\alpha=d \theta+r^{2} d \varphi$ near k.

$$
p: M \backslash k_{2} \rightarrow S^{3}
$$

is a local diffeomorphism. $p^{*} \alpha$ is a contact form on $M \backslash k_{2}$.
In a neighbourhood of k_{2} we have (for $\left.r>0\right) p^{*} \alpha=d \theta+2 r^{2} d \varphi$. This expresssion defines a smooth extension of of $p^{*} \alpha$ over k_{2} as a contact form.

This proof is due to J. Gonzalo Pérez.

1.2 Open books

Definition 1 (Open book decomposition). A manifold M admits an open book decomposition (Σ, Φ) if there exists a compact, orientable surface Σ with $\partial \Sigma=S^{1}$ and a diffeomorphism $\Phi: \Sigma \rightarrow \Sigma$ equal to identity near $\partial \Sigma$, such that $M \simeq \Sigma(\Phi) \cup\left(\partial \Sigma \times D^{2}\right)$.
Here $\Sigma(\Phi)$ is the mapping torus defined by: $\Sigma(\Phi):=\Sigma \times[0,2 \pi] /(x, 2 \pi) \sim(\Phi(x), 0)$.

Figure 1: $\left.\Phi\right|_{\partial \Sigma}=i d$, hence the identification near the boundary is as in a torus with cross section Σ. In general $\left.\Phi\right|_{\Sigma} \neq i d$ so the identification might twist the inside of the torus. Note that $\partial(\Sigma(\Phi)) \simeq \partial \Sigma \times S^{1}$. To each S^{1} in $\partial(\Sigma(\Phi))$ we glue in a disc D^{2}.

The details of the construction of open book decomposition are depicted and discussed in Figures 1. and 2.
Theorem 2 (Alexander, 1923). Let M be a closed, connected, orientable 3-dimensional manifold. Then there exist an open book decomposition of M.

Theorem 3 (Thurston - Winkelnkemper). Every open book decomposition (Σ, Φ) supports a contact structure ξ_{Φ}.

The begining of the proof of Thurston - Winkelnkemper theorem: Let $\theta \in S^{1}$ be the coordinate along $\partial \Sigma$ (take Σ oriented from now on). Let s be a collar parameter of $\partial \Sigma$ in Σ, such that $\partial \Sigma=\{s=0\}$ and $s<0$ in the interior of Σ. Σ is a surface with a boundary, so there exists an exact area form $d \beta$. Let φ be a parameter in S^{1}. Let us define a 1 -form α by

$$
\alpha=\beta+d \varphi
$$

Then

$$
\begin{aligned}
d \alpha & =d \beta \\
\alpha \wedge d \alpha & =d \beta \wedge d \varphi \quad \text { - area form on } \Sigma \times S^{1}
\end{aligned}
$$

Such a form α is well defined on $\Sigma \times S^{1}$, so it is defined in the interior of the pages of the open book decomposition. Now we would like to glue it corectly to define it also near the binding.

By assumption Φ is equal to identity near $\partial \Sigma$, so we can choose the collar parameter s in such a way, that $\Phi=i d$ on $[-2,0] \times \partial \Sigma \subset \Sigma$. Recall that by assumption

$$
M \simeq \Sigma(\Phi) \cup\left(\partial \Sigma \times D^{2}\right)
$$

Figure 2: The pages of the open book are the identical copies of Σ, whereas the binding is the $\partial \Sigma=S^{1}$.

Figure 3: $S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ admits an open book decomposition with page $\Sigma \simeq$ D^{2} and monodromy $\Phi=i d_{D^{2}}$. The decomposition is obtained by gluing in disks/hemispheres into a circle S^{1}. One can see the decomposition in the above figure - it is obtained by rotation around the vertical axis.

Recall that $\partial(\Sigma(\Phi)) \simeq \partial \Sigma \times S^{1}$, so near the boundary of $\partial(\Sigma(\Phi))$ we can define a mapping:

$$
\begin{aligned}
& (s, \theta, \varphi) \in[0,1] \times \partial \Sigma \times S^{1}=[0,1] \times \partial(\Sigma(\Phi)) \\
& (s, \theta, \varphi)
\end{aligned} \mapsto \quad(\theta, 1-s, \varphi) \in \partial \Sigma \times D_{2}^{2}=\partial \Sigma \times[0,2] \times S^{1} .
$$

Lemma 1. The set of 1 -forms β on Σ with the following propeties:

- $\beta=e^{s} d \theta$ on $\left[-\frac{3}{2}, 0\right] \times \partial \Sigma \subset \Sigma$
- $d \beta$ is an area form on Σ of total area $\int_{\Sigma} d \beta=2 \pi$
is non-empty and convex.
The proof of the lemma:
Proof. Let β_{0} be a 1 -form on Σ with $\beta_{0}=e^{s} d \theta$ on $[-2,0] \times \Sigma$. Then

$$
\int_{\Sigma} d \beta_{0}=\int_{\partial \Sigma} \beta_{0}=\{s=0 \text { on } \partial \Sigma\}=\int_{\partial \Sigma} d \theta=2 \pi
$$

Let ω be an area form on Σ with $\int_{\Sigma} \omega=2 \pi$ and $\omega=e^{s} d s \wedge d \theta$ on $[-2,0] \times \partial \Sigma$. This choice of ω is always possible. Note that then

$$
\int_{[-2,0] \times \partial \Sigma} e^{s} d s \wedge d \theta=2 \pi\left(1-e^{-2}\right)<2 \pi
$$

Moreover, $\int_{\Sigma} \omega-d \beta_{0}=0$ and $\omega-d \beta_{0} \equiv 0$ on $[-2,0] \times \partial \Sigma$.
Extend $\omega-d \beta_{0}$ to a 2-form Ω on $\hat{\Sigma}=\Sigma \cup_{\partial \Sigma} D^{2}$ with $\left.\Omega\right|_{D^{2}} \equiv 0$.

$$
\text { Since } \int_{\hat{\Sigma}} \Omega=0, \quad \text { by de Rham theorem } \quad \Omega=d \hat{\beta}
$$

Moreover, in view $d \hat{\beta}=\Omega$ and $\left.\Omega\right|_{([-2,0] \times \partial \Sigma) \cup D^{2}} \equiv 0$, then by Poincaré lemma $\hat{\beta}=d \hat{f}$ on $([-2,0] \times \partial \Sigma) \cup D^{2}$.

We claim that

$$
\beta=\beta_{0}+\left.\hat{\beta}\right|_{\Sigma}-d(\psi f)
$$

is the desired form, where ψ is defined as on Figure 4.
For such defined β the following holds

$$
d \beta=d \beta_{0}+\left.d \hat{\beta}\right|_{\Sigma}=d \beta_{0}+\left.\Omega\right|_{\Sigma}=d \beta_{0}+\omega-d \beta_{0}=\omega
$$

This proves that the desired set of 1-forms is non-empty.
Let us now prove the convexity. Suppose, β^{\prime} is further 1-form with these properties, then it is easy to check that so is the form

$$
(1-t) \beta+t \beta^{\prime}, \quad t \in[0,1] .
$$

Figure 4: A ψ is a smooth function on \mathbb{R}_{-}, such that $\left.\psi\right|_{(-\infty,-2]} \equiv 0$ and $\left.\psi\right|_{[-1.5,0]} \equiv 1$.

The continuation of the proof of Thurston - Winkelnkemper theorem:
Proof. Let $\tilde{\beta}$ be a 1-form on Σ as just described in the lemma. Let μ be a smooth function on $[0,2 \pi]$, such that μ is 1 in the neighbourhood of 0 and μ is 0 in the neighbourhood of 2π.

Then $\beta=\mu(\varphi) \tilde{\beta}+(1-\mu(\varphi)) \Phi^{*} \tilde{\beta}$ is a 1-form on $\Sigma \times[0,2 \pi]$, whose restriction to each fibre $\Sigma \times\{\varphi\}$ has the properties as in the lemma. This induces a 1-form on $\Sigma(\Phi)$.

Note that $d \varphi$ on $\Sigma \times \mathbb{R}$ is invariant under $(x, \varphi) \sim(\Phi(x), \varphi-2 \pi)$, so it induces a 1-form on $\Sigma(\Phi)$.

Let us define

$$
\alpha=\beta+C d \varphi \quad \text { on } \quad \Sigma(\Phi), \quad \text { for some } \quad C \in \mathbb{R}_{+} .
$$

Let us calculate

$$
\alpha \wedge d \alpha=(\beta+C d \varphi) \wedge(d \beta)=\beta \wedge d \beta+C d \varphi \wedge d \beta
$$

Recall, that by the assumption $d \beta$ is an area form on each fibre $\Sigma \times\{\varphi\}$, so $d \varphi \wedge d \beta$ is an area form on $\Sigma(\Phi)$. This means that for large enough $C>0$, $\alpha \wedge d \alpha>0$ everywhere on $\Sigma(\Phi)$. This proves that α is indeed a contact form on $\Sigma(\Phi)$.

Ansatz:

On $\partial \Sigma \times D^{2}$ the 1-form α can be defined as follows

$$
\alpha=h_{1}(r) d \theta+h_{2}(r) d \varphi
$$

Figure 5: The figure depicts the algorithm for finding the solutions for functions h_{1}, h_{2}. One first draws a curve which satisfies the boundary conditions and then interpolates as in Lutz twist.
for some functions h_{1}, h_{2}, which have to satisfy the following boundary conditions:

$$
\begin{aligned}
h_{1}(r)=e^{1-r}, & h_{2}(r)=C, \quad \text { on } \quad \partial \Sigma \times D_{[1,2]}^{2} \\
h_{1}(r)=B>1, & h_{2}(r)=r^{2} .
\end{aligned}
$$

We define $D_{[1,2]}^{2}=\{(r, \varphi) \mid r \in[1,2]\}$. Functions h_{1}, h_{2} also have to satisfy

$$
\operatorname{Det}\left(\begin{array}{ll}
h_{1} & h_{1}^{\prime} \\
h_{2} & h_{2}^{\prime}
\end{array}\right) \neq 0
$$

The solution to this set of equations is depicted on Figure 5.
Teaser: It turns out that for a given manifold M there exists a contact structure (M, ξ) if and only if there exists an open book decomposition (Σ, Φ) of M.

