SURFACES IN CONTACT 3-MANIFOLDS.

Let again $(M, \xi=\operatorname{ker} \alpha)$ be oriented and cooriented contact 3-manifold, let $S \subset M$ be a closed surface. Identify a neighbourhood of S with a normal bundle $S \times \mathbb{R}$. In local coordinates - z coming from the fiber write $\alpha=\beta_{z}+u_{z} d z=a(x, y, z) d x+b(x, y, z) d y+c(x, y, z) d z$, with β_{z} understood as a 1-form on S and u_{z} - as a function on S. Now

$$
d \alpha=d \beta_{z}-\beta_{z} \wedge d z+d u_{z} \wedge d z
$$

with F meaning the partial derivative along z. The contact condition for α now reads

$$
0 \neq \alpha \wedge d \alpha=\left(\beta_{z}+u_{z} d_{z}\right)\left(d \beta_{z}-\beta_{z} \wedge d z+d u_{z} \wedge d z\right)
$$

and amounts to say that

$$
u_{z} d \beta_{z}+\beta_{z} \wedge\left(d u_{z}-\beta_{z}^{\cdot}\right)>0
$$

as a two form on S. Notice the clever use of the fact that we work on a surface to get rid of some terms.

Characteristic foliation. Let Ω be an area form on S. Define S_{ξ} by the unique vector field X that

$$
\iota_{X} \Omega=\beta_{0}
$$

where β_{0} is of course α restricted to the tangent bundle $T S$. Observe that X lies in ker β_{0}. X itself is 0 precisely in points p where α looses its β_{0} term, that is $\alpha_{p}=u_{0}(p) d z$, i.e. $T_{p} S=\xi_{p}$.

Recall that the divergence of a filed is a measure, how much a vector field changes the volume form: the Lie derivative along X of the 2 -form Ω is again a 2 -form and so must be proportional to Ω itself:

$$
\operatorname{div}(X) \Omega=L_{X} \Omega
$$

and recall that by Cartan Magic Formula you don't need to know what Lie derivative is, because

$$
L_{X} \Omega=d \iota_{X} \Omega
$$

which happens to be $d \beta$ in our case.

Lemma. A vector field on S defines a characteristic foliation of some contact structure in $S \times \mathbb{R}$ iff div (X) is nonzero in every point in which X is zero.

Proof. Assume that we have a contact structure α as before, therefore

$$
u_{z} d \beta_{z}+\beta_{z} \wedge\left(d u_{z}-\beta_{z}^{\cdot}\right)>0
$$

holds. Suppose in a point p we have $X_{p}=0$, then $\left(\beta_{0}\right)_{p}=0$ and so $\xi_{p}=T_{p} S$. Compute

$$
d\left(\iota_{X} \Omega\right)_{p}=\left(d \beta_{0}\right)_{p}=\left.d \alpha\right|_{T_{p} S}=\left.d \alpha\right|_{\xi_{p}} \neq 0
$$

and we are done.
Other way around, assume X a vector field satisfying $X_{p}=0 \Rightarrow \operatorname{div}(X)(p) \neq 0$. Define $\beta=\iota_{X} \Omega$ and a function u by $d \beta=u \Omega$. By our assumption, whenever β_{p} is zero, $u(p)$ is not.

Pick any 1-form γ that gives $\beta \wedge \gamma \geq 0$ and $\beta \wedge \gamma_{p}>0$ where β was nonzero.
Define $\beta_{z}=\beta+z(d u-\gamma)$, with z again coming from vertival direction. Define $\alpha=\beta_{z}+u d z$. On the surface, at the zero level,

$$
u d \beta_{0}+\beta_{0} \wedge \gamma=u^{2} \Omega+\beta_{0} \wedge \gamma>0
$$

and since this condition is open, it holds in some neighbourhood, which concludes the proof.

Definition. A vector field X on a surface is of Morse-Smale type if
(1) X has at moste finitely many singularities, all nondegenerate;
(2) X has at most finitely many closed orbits, all nondegenerate;
(3) the limit sets of the orbits can only be singular points or closed orbits;
(4) there are no orbits connecting hyperbolic points.

Proposition. By a \mathcal{C}^{∞}-small perturbation of $S($ in $S \times \mathbb{R})$ we can make S_{ξ} of Morse-Smale type.

Proposition. The characteristic foliation of a surface determines the germ of the contact structure near the surface.

Convex Surfaces.

Definition. A surface S in a contact 3-manifold is called convex iff there exists (at least in small neighbourhood) a contact vector field transverse to S.

Lemma. A surface S of is convex iff there exists an embedding $\psi: S \times \mathbb{R} \hookrightarrow M$ such that $\psi(\cdot, 0)$ is the inclusion and the pullback of the contact form, $\psi^{*} \alpha$ is an \mathbb{R}-invariant contact form.

Proof. The transverse flow gives - locally - a tubular neighbourhood of S with the flow tangent to the fibers, leaving the structure invariant. Conversely, \mathbb{R}-invariant embedding is equiped with a contact transverse field - image of a vertical field, concluding the proof.

Notice that in the invariant case, the contact condition in neighbourhood of S with contact form $\alpha=\beta+u d z$ and with a characteristic foliation given by X becomes

$$
u \operatorname{div}(X)-X u>0
$$

Definition. The dividing set Γ_{S} on a convex surface S is

$$
\left\{p \in S \mid Y(p) \in \xi_{p}\right\}
$$

for some transverse contact field Y. This set depends on Y chosen.

Example. For a 3-torus \mathbb{T}^{3} with contact structure $\operatorname{ker}(\cos \theta d x-\sin \theta d y)$, the field ∂_{x} makes any "vertical slice" two torus $S=\left\{x=x_{0}\right\}$ into a convex surface. The dividing set are then two "horizontal slices" $\Gamma_{S}=\left\{\theta=\frac{\pi}{2} \vee \theta=\frac{3 \pi}{2}\right\}$.

We will now describe, how a dividing set on a convex surface can look like. By the previous lemma, we are always in a situation of a contact structure

$$
\begin{gathered}
\alpha=\beta+u d z \\
u d \beta+\beta \wedge d u>0
\end{gathered}
$$

and with a transverse field $\partial_{z} . \Gamma_{S}$ is then the zero set of u, but $d u$ is nonzero there, by the contact condition. Hence, by Implicit Functions Theorem, Γ_{S} is a collection of circles on S.

More than that, each of this circles are transverse to ξ. Suppose to the contrary. Then we have a tangent vector v such that

- $\iota_{v} u d \beta=0$, since u vanishes along Γ_{S};
- $\iota d u=0$, since it is tangent to $\{u=0\}$;
- $\iota_{v} \beta=0$, since v lies in ξ
but then

$$
\iota_{v}(u d \beta+\beta \wedge d u)=0
$$

contradicting the contact condition. This in particular means, that Γ_{S} meets no singular points of S_{ξ}, as those are where $T_{p} S=\xi_{p}$.

Theorem. Γ_{S} is determined by S_{ξ} up to isotopy transverse to S_{ξ}.

Proposition. If the field defining S_{ξ} is Morse-Smale, then S is convex.

Those combined with previous lemmas produce

Theorem. Given a convex surface S, any singular foliation divided by Γ_{S} can be realised as the characteristic foliation by a \mathcal{C}^{∞}-small perturbation of S.

