
Surfaces in contact 3-manifolds.

Let again (M, ξ = kerα) be oriented and cooriented contact 3-manifold, let S ⊂ M be a closed surface.
Identify a neighbourhood of S with a normal bundle S ×R. In local coordinates - z coming from the fiber -
write α = βz + uzdz = a(x, y, z)dx+ b(x, y, z)dy + c(x, y, z)dz, with βz understood as a 1-form on S and uz
- as a function on S. Now

dα = dβz − β·z ∧ dz + duz ∧ dz

with F · meaning the partial derivative along z. The contact condition for α now reads

0 6= α ∧ dα = (βz + uzdz)(dβz − β·z ∧ dz + duz ∧ dz)

and amounts to say that

uzdβz + βz ∧ (duz − β·z) > 0

as a two form on S. Notice the clever use of the fact that we work on a surface to get rid of some terms.

Characteristic foliation. Let Ω be an area form on S. Define Sξ by the unique vector field X that

ιXΩ = β0

where β0 is of course α restricted to the tangent bundle TS. Observe that X lies in kerβ0. X itself is 0
precisely in points p where α looses its β0 term, that is αp = u0(p)dz, i.e. TpS = ξp.

Recall that the divergence of a filed is a measure, how much a vector field changes the volume form: the Lie
derivative along X of the 2-form Ω is again a 2-form and so must be proportional to Ω itself:

div(X)Ω = LXΩ

and recall that by Cartan Magic Formula you don’t need to know what Lie derivative is, because

LXΩ = dιXΩ

which happens to be dβ in our case.

Lemma. A vector field on S defines a characteristic foliation of some contact structure in S×R iff div(X)
is nonzero in every point in which X is zero.

Proof. Assume that we have a contact structure α as before, therefore

uzdβz + βz ∧ (duz − β·z) > 0

holds. Suppose in a point p we have Xp = 0, then (β0)p = 0 and so ξp = TpS. Compute
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d(ιXΩ)p = (dβ0)p = dα|TpS = dα|ξp 6= 0

and we are done.

Other way around, assume X a vector field satisfying Xp = 0 ⇒ div(X)(p) 6= 0. Define β = ιXΩ and a
function u by dβ = uΩ. By our assumption, whenever βp is zero, u(p) is not.

Pick any 1-form γ that gives β ∧ γ ≥ 0 and β ∧ γp > 0 where β was nonzero.

Define βz = β+z(du−γ), with z again coming from vertival direction. Define α = βz+udz. On the surface,
at the zero level,

udβ0 + β0 ∧ γ = u2Ω + β0 ∧ γ > 0

and since this condition is open, it holds in some neighbourhood, which concludes the proof.

Definition. A vector field X on a surface is of Morse-Smale type if

(1) X has at moste finitely many singularities, all nondegenerate;
(2) X has at most finitely many closed orbits, all nondegenerate;
(3) the limit sets of the orbits can only be singular points or closed orbits;
(4) there are no orbits connecting hyperbolic points.

Proposition. By a C∞-small perturbation of S (in S × R) we can make Sξ of Morse-Smale type.

Proposition. The characteristic foliation of a surface determines the germ of the contact structure near
the surface.

Convex Surfaces.

Definition. A surface S in a contact 3-manifold is called convex iff there exists (at least in small neigh-
bourhood) a contact vector field transverse to S.

Lemma. A surface S of is convex iff there exists an embedding ψ : S × R ↪→ M such that ψ(·, 0) is the
inclusion and the pullback of the contact form, ψ∗α is an R-invariant contact form.

Proof. The transverse flow gives - locally - a tubular neighbourhood of S with the flow tangent to the fibers,
leaving the structure invariant. Conversely, R-invariant embedding is equiped with a contact transverse field
- image of a vertical field, concluding the proof.

Notice that in the invariant case, the contact condition in neighbourhood of S with contact form α = β+udz
and with a characteristic foliation given by X becomes

udiv(X)−Xu > 0
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Definition. The dividing set ΓS on a convex surface S is

{p ∈ S | Y (p) ∈ ξp}

for some transverse contact field Y . This set depends on Y chosen.

Example. For a 3-torus T3 with contact structure ker(cos θdx − sin θdy), the field ∂x makes any ”vertical
slice” two torus S = {x = x0} into a convex surface. The dividing set are then two ”horizontal slices”
ΓS = {θ = π

2 ∨ θ = 3π
2 }.

We will now describe, how a dividing set on a convex surface can look like. By the previous lemma, we are
always in a situation of a contact structure

α = β + udz

udβ + β ∧ du > 0

and with a transverse field ∂z. ΓS is then the zero set of u, but du is nonzero there, by the contact condition.
Hence, by Implicit Functions Theorem, ΓS is a collection of circles on S.

More than that, each of this circles are transverse to ξ. Suppose to the contrary. Then we have a tangent
vector v such that

• ιvudβ = 0, since u vanishes along ΓS ;
• ιdu = 0, since it is tangent to {u = 0};
• ιvβ = 0, since v lies in ξ

but then

ιv(udβ + β ∧ du) = 0

contradicting the contact condition. This in particular means, that ΓS meets no singular points of Sξ, as
those are where TpS = ξp.

Theorem. ΓS is determined by Sξ up to isotopy transverse to Sξ.

Proposition. If the field defining Sξ is Morse-Smale, then S is convex.

Those combined with previous lemmas produce

Theorem. Given a convex surface S, any singular foliation divided by ΓS can be realised as the characteristic
foliation by a C∞-small perturbation of S.
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