
0.1 Contact structures on 3-manifolds

Theorem 0.1.1 (Martinet, 1971). Every closed, orientable 3-manifold ad-
mits a contact structure.

Hence all manifolds M in the lecture are tacitly assumed to be closed
and orientable.

Proof. Let us begin with result on the structure of 3-manifolds. By result
of Lickorish and Wallace, every connected, closed, oriented manifold can
be obtained from S3 via surgery.

To be more precise, there is a link
n∐
S1 ↪→ S3,

and an extension to a framed embedding∐
S1 ×D2 ↪→ S3.

Hence we may cut each circle in the link along its tubular neighbourhood
to obtain

S3 r
(∐

S1 ×D2
)
.

Now we glue in D2 × S1s on the boundary

∂(S1 ×D2) = S1 × S1 = ∂(D2 × S1).

The other way to see it is to create a graph based on the link. For each
circle in the link we set a vertex. Two vertices are joined by an edge if
the appropriate circles are linked. A tubular neighbourhood of the graph
in S3 = R3 ∪ {∞} is a (filled) n-torus (n-fold connected sum of tori)Its
complement in S3 is again a (filled) n-torus. The construction finishes by
adding a Dehn twists on appropriate handles before gluing boundaries
of these tori. However we have to take care of a contact structure as we
carry the surgery steps.
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Contact surgery Of course S3 admits standard contact structure ξst.
By the isotopy extension theorem (in the first lecture) we may isotope the
embedded S1s until they become transverse to ξst (actually, we proved
appropriate theorem for isotopy to Legendrian knots). Again using results
presented before (the neighbourhood theorem which we again proved
only for Legendrian knots) we may choose δ appropriately small radius
and framed embeddings

f : S1 ×D2
δ ↪→ S3

such that the pullback of ξst is the standard form.

f∗ξst = dθ + r 2dφ.

(θ denotes a coordinate on S1, whereas (r ,φ) are polar coordinates
on D2). From now on we identify (S1 × D2

δ, dθ + r 2dφ) with (f (S1 ×
D2
δ), f∗ξst).

We will perform surgery inside the tubular neighbourhood

S1 ×D2
δ.

Choose 0 < ε < δ and cut S1 ×D2
ε ⊂ S1 ×D2

δ ⊂ S3. Now glue D2 × S1
ε

using the following identification on the boundary ∂(D2 × S1
ε ) = S1 × S1

ε
(for clarity we use (θ, r ,φ) for coordinates on the tube S1×D2

ε inside S3,
whereas (φ, r , θ) live on D2 × S1

ε . )

(φ, r = ε, θ) 7−→ (θ, r = ε,−φ).

Observe, that the minus sign in the formula takes care of the orientation
of the resulting manifold.

Now we need to extend the contact form on S3rS1×D2
ε to the interior

of glued D2 × S1
ε . Of course the easiest way would be to choose constant

extension of the from on the boundary, dθ + r 2dφ. However under our
glueing identification it becomes

dφ− r 2dθ (1)

and as we approach r = 0 we encounter problems with smoothness. To
avoid it we would like the extension to behave as

dθ + r 2dφ (2)
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in a neighbourhood of r = 0.
So we bring an ansatz1 in.

α def.= h1(r)dθ + h2(r)dφ.

Additionaly we have the boundary conditions on h1 and h2:

h1(r) = −r 2 h2(r) = 1 near r = δ by (1)

h1(r) = 1 h2(r) = r 2 near r = 0 by (2)

Of course it has to be a contact form, so we have to check when
α∧ dα ≠ 0.

α∧ dα = (h1dθ + h2dφ)∧ (h′1dr ∧ dθ + h′2dr ∧ dφ)
= h1h′2dθ ∧ dr ∧ dφ+ h2h′1dφ∧ dr ∧ dθ
= (h1h′2 − h2h′1)dθ ∧ dr ∧ dφ.

Hence such α is a contact form for all r ≠ 0 if and only if

h1h′2 − h2h′1 =
[
h1 h′1
h2 h′2

]
≠ 0.

We may regard h1(r) and h2(r) as coordinates of a curve c : [0, δ]→
R2, c(r) = (h1(r), h2(r)).

Then the condition above simply means, that the tangent vector to
the curve and vector defined by the curve itself are linearly independent
(i.e. not parallel). An example of such curve is presented in figure 1.

Theorem 0.1.2 (Lutz, 1971). Let M be a 3-manidold. Every cooriantable,
tangent 2-plane field η ⊂ TM is homotopic to a contact structure.

1ansatz – first approach, a starting equation; etwas in Ansatz bringen – to use
something for the calculation; to start the calculation using something.
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h1(r)

h2(r)

1

−δ2

(h1(r), h2(r))
(h′1(r), h′2(r))

1

Figure 1: Example of curve c(r) = (h1(r), h2(r))

0.2 Tight and overtwisted

Example 1. Recall that α = cos rdz + r sin rdφ is a contact form on R3

in cylindrical coordinates (r ,φ, z).
The disk ∆ def.= {z = 0, r ≤ π} has as boundary a Legendrian curve and

T∆|∂∆ = kerα|∂∆.
Hence the Thurston-Bennequin invariant vanishes

tb(∂∆) = 0.

However, such a disk bounding a Legendrian curve can not be embedded
into R3

st.

Definition 0.2.1. The characteristic foliation of a surface Σ ⊂ (M, ξ) in a
contact 3-manifold is the singular 1-dimensional foliation defined locally
as a curves tangent to subspaces

TpΣ∩ ξp.
Singularities occur when TpΣ = ξp.

Example 2. Consider our disk ∆ in (R3, α). Its characteristic foliation is
the radial foliation, with singular points the origin and the boundary.
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Figure 2: ∆ and ∆′ ⊂ (R3,ker(α)) and their characteristic foliations

Now keep the boundary of ∆ fixed and push the interior of the disk
slightly away from (z = 0)-plane to obtain ∆′. Then the singular set
consists of just one point. The surfaces and their characteristic foliations
are pictured in figure 2.

Definition 0.2.2 (Eliashberg). A contact structure on a 3-manifold is over-
twisted if there exist an embedding of a disk whose characteristic foli-
ation looks like the one on ∆. Equivalently, if there exist an embedded
disk with boundary a Legendrian curve γ with tb(γ) = 0.

If there is no such disk, then the contact structure is tight.

Theorem 0.2.1 (Bennequin, 1983). On R3 the standard contact structure
ξst = ker(dz + xdy) is tight.

Remark 1. Actually in (R3, ξst) one can find an immersed disc with
boundary a Legendrian curve with Thurston-Bennequin invariant equal 0.

Lemma 0.2.2. Let ξ be a contact structure on a 3-manifold M . Then there
is an overtwisted contact structure ξ′ homotopic to ξ as a tangent 2-plane
field.

Proof. Choose a knot k transverse to ξ and its neighbourhood S1 ×D2

on which the contact structure is standard,

ξ|S1×D2 = ker(dθ + r 2dφ).
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Now as before, on S1 ×D2 replace ξ by

ξ′ def.= ker (h1(r)dθ + h2(r)dφ)

with additional boundary conditions

h1(r) = 1 h2(r) = r 2 for r ∈ [0, ε)∪ (1− ε,1].

Of course we must just make sure that the curve c(r) = (h1(r), h2(r))
is not parallel to its tangent vector, because otherwise ξ′ is not a contact
structure anymore. An example of such curve is pictured below.

h1(r)

h2(r)

(h1(r0),0)

1

1

Note that as we cross the x-axis for the first time (e.g. for parameter
r = r0), contact planes are perpendicular to the normal planes to the
curve and ∆ = {θ = θ0, r ≤ r0}
is an overtwisted disk. Note also, that the curve has to go around origin,
otherwise there will exist a point when curve is parallel to its tangent.

Now we need a homotopy between contact structures ξ and ξ′. This
can be rephrased as finding a homotopy between paths in figure 3.
However if we want to conduct such a homotopy on the (h1, h2) plane
(e.g. linear interpolation depending on the parameter t), then we have to
pass through the origin (e.g. for t = t1 and r = r1), and at this moment

ξ′t = ker(f(t1)h1(r1)dθ + f2(t1)h2(r1)dφ ≡ 0)
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Figure 3: Homotopy of paths. Blue is the overtwisted structure, red is
(isotopic to) the standard one.

is not a 2-plane field. We may fix it by adding a little of dr direction when
passing through (0,0).

Let χε(r) be a smooth characteristic function of [2ε,1−2ε] vanishing
outside [ε,1− ε]. An example of such function can be found below.

Then we claim that

αt = t(1− t)χ(r)dr + h1(r)dθ + h2(r)dφ

is the desired homotopy. Indeed if 2ε < r1 < 2ε then αt contains dr
summand, hence regardless of h1 and h2 αtdoes not vanish.

1

1ε 2ε 1− 2ε 1− ε
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Theorem 0.2.3. Let M be a 3-manifold.

Lutz: Every homotopy class of tangent 2-plane bundles contains an over-
twisted contact structure.

Eliashberg, 1989: Every two overtwisted contact structures that are ho-
motopic as 2-plane fields are homotopic as contact structures and
hence – by Gray stability – isotopic.

0.3 Symplectic fillings

Definition 0.3.1. Let (W,ω) be a compact symplectic 4-manifold bounded
by a contact 3-manifold (M, ξ). We assume, that the orientation on M is
induced from W .

• W is called a weak symplectic filling of a M if ω|ξ > 0.

• W is called a strong symplectic filling it there exists a Liouville
vector field Y for ω defined near and transverse to M ⊂ W , such
that

ker(iYω|TM) = ξ.

Remark 2. • Every strong filling is a weak filling.

• Not every weakly fillable contact 3-manifold is strongly fillable.

Theorem 0.3.1 (Eliashberg-Gromov). Every weakly fillable contact 3-manifold
is tight.

Example 3. • (R3, ξst) is tight (Bennequin).

• (S3, ξst) is tight by a strong filling: (D4, dx1 ∧ dy1 + dx2 ∧ dy2),
Y = x1∂x1 +y1∂y1 + x2∂x2 +y2∂y2 .

• (T 3,ker(cosθdx − sinθdy)) is tight by a weak filling: (S1 × S1 ×
S2, ξst).

Exercise: find a strong filling.

Remark 3. Observe, that R3 π→ T 3 is a covering by a tight contact manifold.
Moreover π∗(cosθdx − sinθdy) = ξst on R3. Hence T 3 is tight.
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