Seminar on Complex Analysis

Meeting 1915, 11th December 2006
lecture: Convexity of symmetrized ellipsoids
author: Paweł Zapałowski
A domain $D \subset \mathbb{C}^{n}$ is called \mathbb{C}-convex if $D \cap L$ is connected and simply connected for any complex affine line L such that $D \cap L$ is not empty.

For $p>0$ let $\mathcal{E}_{p, n}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{1}\right|^{p}+\cdots+\left|z_{n}\right|^{p}<1\right\}, E:=$ $\mathcal{E}_{1,1}$ and let $\pi_{n}=\left(\pi_{n, 1}, \ldots, \pi_{n, n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be defined as follows

$$
\pi_{n, k}(z)=\sum_{1 \leqslant j_{1}<\cdots<j_{k} \leqslant n} z_{j_{1}} \ldots z_{j_{k}}, \quad 1 \leqslant k \leqslant n, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} .
$$

The set $\mathbb{E}_{p, n}:=\pi_{n}\left(\mathcal{E}_{p, n}\right)$ is called the symmetrized (p, n)-ellipsoid.
Proposition 1 (cf. Theorem 1 in [3]). (i) If $p \geqslant 2$ and $n \geqslant 3$ then $\mathbb{E}_{p, n}$ is not \mathbb{C}-convex.
(ii) Let $1<p<2$. If $n \geqslant k=k(p):=\min \left\{l \in \mathbb{N}: 2 \log _{l(l-1)} l<p\right\}$, then $\mathbb{E}_{p, n}$ is not \mathbb{C}-convex.

Since $2 \log _{n(n-1)} n \searrow 1$ as $n \rightarrow+\infty$, we have the following
Corollary 2. For any $p>1$ there exists $n \in \mathbb{N}$ such that $\mathbb{E}_{p, n}$ is not \mathbb{C}-convex.

Proposition 3. (i) For any $p \in\left(0, \log _{2} \frac{5}{4}\right) \cup(2,+\infty)$ and $n \geqslant 2$ the set $\mathbb{E}_{p, n}$ is not convex.
(ii) The set $\mathbb{E}_{2,2}$ is convex.

Corollary 4. (i) There exists a non-convex set in $\mathbb{C}^{n}, n \geqslant 2$, such that its image through π_{n} is not convex, either.
(ii) There exists a convex set in \mathbb{C}^{2} such that its image through π_{2} is convex, too.

In the proof of Proposition 3 (ii) we will use the following
Lemma 5. Let $z_{1} \in a_{1}+r_{1} E, z_{2} \in a_{2}+r_{2} E$. Then $\frac{1}{2}\left(z_{1}+z_{2}\right) \in$ $\frac{1}{2}\left(a_{1}+a_{2}\right)+\frac{1}{2}\left(r_{1}+r_{2}\right) E$.

Recall that $h_{a} \in \operatorname{Aut}\left(\mathcal{E}_{2, n}\right)$, where

$$
h_{a}(z):=\frac{\sqrt{1-\|a\|^{2}}\left(\|a\|^{2} z-\langle z, a\rangle a\right)-\|a\|^{2} a+\langle z, a\rangle a}{\|a\|^{2}(1-\langle z, a\rangle)}, \quad z, a \in \mathcal{E}_{2, n}, a \neq 0 .
$$

If $a=0$ then $h_{0}:=\operatorname{id}_{\mathcal{E}_{2, n}}$.
Let Σ_{n} denote the group of all permutations of the set $\{1,2, \ldots, n\}$. For $\sigma \in \Sigma_{n}, z=\left(z_{1}, \ldots, z_{n}\right)$ denote $z_{\sigma}:=\left(z_{\sigma(1)}, \ldots, z_{\sigma(n)}\right)$. Thus we have the following

Lemma 6. Let $a \in \mathcal{E}_{2, n}$ is such that $a=a_{\sigma}$ for any $\sigma \in \Sigma_{n}$. If $f: \mathbb{E}_{2, n} \rightarrow \mathbb{E}_{2, n}$ is a holomorphic mapping such that $f \circ \pi_{n}=\pi_{n} \circ h_{a}$ then $f \in \operatorname{Aut}\left(\mathbb{E}_{2, n}\right)$.

Proposition 7. $\mathbb{E}_{2,2}$ is Lu Qi-Keng domain.
In the proof of Proposition 7 we use the following
Lemma 8. For any $z \in \mathcal{E}_{2,2}$ there exists $\tilde{a}=(a, a) \in \mathcal{E}_{2,2}$ such that $h_{\tilde{a} 2}(z)=0$, where $h_{\tilde{a}}=\left(h_{\tilde{a} 1}, h_{\tilde{a} 2}\right) \in \operatorname{Aut}\left(\mathcal{E}_{2,2}\right)$.

References

[1] S. R. Bell The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc. 270 (1982) 685-691.
[2] A. Edigarian, W. Zwonek Geometry of the symmetrized polydisc, Arch. Math. 84 (2005) 364-374.
[3] N. Nikolov, P. Pflug, W. Zwonek An example of a \mathbb{C}-convex domain which is not biholomorphic to a convex domain, preprint-arXiv:math.CV/0608662, (2006).

