Seminar on Complex Analysis Meeting 1915, 11th December 2006 lecture: **Convexity of symmetrized ellipsoids** author: Paweł Zapałowski

A domain $D \subset \mathbb{C}^n$ is called \mathbb{C} -convex if $D \cap L$ is connected and simply connected for any complex affine line L such that $D \cap L$ is not empty.

For p > 0 let $\mathcal{E}_{p,n} := \{(z_1, \ldots, z_n) \in \mathbb{C}^n : |z_1|^p + \cdots + |z_n|^p < 1\}, E := \mathcal{E}_{1,1}$ and let $\pi_n = (\pi_{n,1}, \ldots, \pi_{n,n}) : \mathbb{C}^n \to \mathbb{C}^n$ be defined as follows

$$\pi_{n,k}(z) = \sum_{1 \leq j_1 < \dots < j_k \leq n} z_{j_1} \dots z_{j_k}, \quad 1 \leq k \leq n, \ z = (z_1, \dots, z_n) \in \mathbb{C}^n.$$

The set $\mathbb{E}_{p,n} := \pi_n(\mathcal{E}_{p,n})$ is called the symmetrized (p, n)-ellipsoid.

Proposition 1 (cf. Theorem 1 in [3]). (i) If $p \ge 2$ and $n \ge 3$ then $\mathbb{E}_{p,n}$ is not \mathbb{C} -convex.

(ii) Let $1 . If <math>n \ge k = k(p) := \min\{l \in \mathbb{N} : 2\log_{l(l-1)} l < p\}$, then $\mathbb{E}_{p,n}$ is not \mathbb{C} -convex.

Since $2\log_{n(n-1)}n \searrow 1$ as $n \to +\infty$, we have the following

Corollary 2. For any p > 1 there exists $n \in \mathbb{N}$ such that $\mathbb{E}_{p,n}$ is not \mathbb{C} -convex.

Proposition 3. (i) For any $p \in (0, \log_2 \frac{5}{4}) \cup (2, +\infty)$ and $n \ge 2$ the set $\mathbb{E}_{p,n}$ is not convex.

(ii) The set $\mathbb{E}_{2,2}$ is convex.

Corollary 4. (i) There exists a non-convex set in \mathbb{C}^n , $n \ge 2$, such that its image through π_n is not convex, either.

(ii) There exists a convex set in \mathbb{C}^2 such that its image through π_2 is convex, too.

In the proof of Proposition 3 (ii) we will use the following

Lemma 5. Let $z_1 \in a_1 + r_1 E$, $z_2 \in a_2 + r_2 E$. Then $\frac{1}{2}(z_1 + z_2) \in \frac{1}{2}(a_1 + a_2) + \frac{1}{2}(r_1 + r_2)E$.

Recall that $h_a \in \operatorname{Aut}(\mathcal{E}_{2,n})$, where

$$h_{a}(z) := \frac{\sqrt{1 - \|a\|^{2}} (\|a\|^{2} z - \langle z, a \rangle a) - \|a\|^{2} a + \langle z, a \rangle a}{\|a\|^{2} (1 - \langle z, a \rangle)},$$
$$z, a \in \mathcal{E}_{2,n}, \ a \neq 0.$$

If a = 0 then $h_0 := \operatorname{id}_{\mathcal{E}_{2,n}}$.

Let Σ_n denote the group of all permutations of the set $\{1, 2, \ldots, n\}$. For $\sigma \in \Sigma_n, z = (z_1, \ldots, z_n)$ denote $z_{\sigma} := (z_{\sigma(1)}, \ldots, z_{\sigma(n)})$. Thus we have the following **Lemma 6.** Let $a \in \mathcal{E}_{2,n}$ is such that $a = a_{\sigma}$ for any $\sigma \in \Sigma_n$. If $f : \mathbb{E}_{2,n} \to \mathbb{E}_{2,n}$ is a holomorphic mapping such that $f \circ \pi_n = \pi_n \circ h_a$ then $f \in \operatorname{Aut}(\mathbb{E}_{2,n})$.

Proposition 7. $\mathbb{E}_{2,2}$ is Lu Qi-Keng domain.

In the proof of Proposition 7 we use the following

Lemma 8. For any $z \in \mathcal{E}_{2,2}$ there exists $\tilde{a} = (a, a) \in \mathcal{E}_{2,2}$ such that $h_{\tilde{a}2}(z) = 0$, where $h_{\tilde{a}} = (h_{\tilde{a}1}, h_{\tilde{a}2}) \in \operatorname{Aut}(\mathcal{E}_{2,2})$.

References

- S. R. Bell The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc. 270 (1982) 685–691.
- [2] A. Edigarian, W. Zwonek Geometry of the symmetrized polydisc, Arch. Math. 84 (2005) 364–374.
- [3] N. Nikolov, P. Pflug, W. Zwonek An example of a C-convex domain which is not biholomorphic to a convex domain, preprint—arXiv:math.CV/0608662, (2006).

 $\mathbf{2}$