Cross theorem with singularities pluripolar vs. analytic case

Marek Jarnicki, Peter Pflug

1. Introduction. Main result

We fix an integer $N \geq 2$ and let D_{j} be a (connected) Riemann domain of holomorphy over $\mathbb{C}^{n_{j}}, j=$ $1, \ldots, N$. Let $\varnothing \neq A_{j} \subset D_{j}$ be locally pluriregular, $j=1, \ldots, N$.

We will use the following conventions. For arbitrary $B_{j} \subset D_{j}, j=1, \ldots, N$, we write $B_{j}^{\prime}:=B_{1} \times \cdots \times B_{j-1}$, $j=2, \ldots, N, B_{j}^{\prime \prime}:=B_{j+1} \times \cdots \times B_{N}, j=1, \ldots, N-1$. Thus, for each $j \in\{1, \ldots, N\}$, we may write $B_{1} \times \cdots \times B_{N}=B_{j}^{\prime} \times B_{j} \times B_{j}^{\prime \prime}$ (with natural exceptions for $j \in\{1, N\}$). Analogously, a point $a=$ $\left(a_{1}, \ldots, a_{N}\right) \in D_{1} \times \cdots \times D_{N}$ will be frequently written as $a=\left(a_{j}^{\prime}, a_{j}, a_{j}^{\prime \prime}\right)$, where $a_{j}^{\prime}:=\left(a_{1}, \ldots, a_{j-1}\right)$, $a_{j}^{\prime \prime}:=\left(a_{j+1}, \ldots, a_{N}\right)$ (with obvious exceptions for $j \in\{1, N\}$).

We define an N-fold cross

$$
\boldsymbol{X}=\boldsymbol{X}\left(\left(D_{j}, A_{j}\right)_{j=1}^{N}\right):=\bigcup_{j=1}^{N} A_{j}^{\prime} \times D_{j} \times A_{j}^{\prime \prime}
$$

One may prove that \boldsymbol{X} is connected.
More generally, for arbitrary pluripolar sets $\Sigma_{j} \subset A_{j}^{\prime} \times A_{j}^{\prime \prime}, j=1, \ldots, N$, we define an N-fold generalized cross

$$
\boldsymbol{T}=\boldsymbol{T}\left(\left(D_{j}, A_{j}, \Sigma_{j}\right)_{j=1}^{N}\right):=\bigcup_{j=1}^{N}\left\{\left(a_{j}^{\prime}, z_{j}, a_{j}^{\prime \prime}\right) \in A_{j}^{\prime} \times D_{j} \times A_{j}^{\prime \prime}:\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \notin \Sigma_{j}\right\} \subset \boldsymbol{X}
$$

We say that \boldsymbol{T} is generated by $\Sigma_{1}, \ldots, \Sigma_{N}$. Obviously, $\boldsymbol{X}=\boldsymbol{T}\left(\left(D_{j}, A_{j}, \varnothing\right)_{j=1}^{\infty}\right)$.
Observe that any 2 -fold generalized cross is in fact a 2 -fold cross.
Let $h_{A_{j}, D_{j}}$ denote the relative extremal function of A_{j} in $D_{j}, j=1, \ldots, N$. Recall that

$$
h_{A, D}:=\sup \left\{u \in \mathcal{P S H}(D): u \leq 1,\left.u\right|_{A} \leq 0\right\} .
$$

Put $\widehat{\boldsymbol{X}}:=\left\{\left(z_{1}, \ldots, z_{N}\right) \in D_{1} \times \cdots \times D_{N}: h_{A_{1}, D_{1}}^{*}\left(z_{1}\right)+\cdots+h_{A_{N}, D_{N}}^{*}\left(z_{N}\right)<1\right\}$, where ${ }^{*}$ stands for the upper semicontinuous regularization. One may prove that $\widehat{\boldsymbol{X}}$ is a (connected) domain of holomorphy and $\boldsymbol{X} \subset \widehat{\boldsymbol{X}}$.

Let $M \subset \boldsymbol{T}$ be relatively closed. We say that a function $f: \boldsymbol{T} \backslash M \longrightarrow \mathbb{C}$ is separately holomorphic on $\boldsymbol{T} \backslash M$ (we write $f \in \mathcal{O}_{s}(\boldsymbol{T} \backslash M)$) if for any $j \in\{1, \ldots, N\}$ and $\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \in\left(A_{j}^{\prime} \times A_{j}^{\prime \prime}\right) \backslash \Sigma_{j}$, the function $D_{j} \backslash M_{\left(a_{j}^{\prime}, \cdot, a_{j}^{\prime \prime}\right)} \ni z_{j} \longmapsto f\left(a_{j}^{\prime}, z_{j}, a_{j}^{\prime \prime}\right) \in \mathbb{C}$ is holomorphic in $D_{j} \backslash M_{\left(a_{j}^{\prime}, \cdot, a_{j}^{\prime \prime}\right)}$, where $M_{\left(a_{j}^{\prime}, \cdot, a_{j}^{\prime \prime}\right)}:=\left\{z_{j} \in D_{j}:\right.$ $\left.\left(a_{j}^{\prime}, z_{j}, a_{j}^{\prime \prime}\right) \in M\right\}$ is the fiber of M over $\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right)$.

We are going to discuss the following extension theorem with singularities proved in [Jar-Pfl 2003a], [Jar-Pfl 2003b], see also [Jar-Pfl 2007].

Theorem 1.1 (Extension theorem with singularities for crosses). Under the above assumptions, let $\boldsymbol{T} \subset \boldsymbol{X}$ be an N-fold generalized cross and let $M \subset \boldsymbol{X}$ be a relatively closed set such that
(\dagger) for all $j \in\{1, \ldots, N\}$ and $\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \in\left(A_{j}^{\prime} \times A_{j}^{\prime \prime}\right) \backslash \Sigma_{j}$, the fiber $M_{\left(a_{j}^{\prime}, \cdot, a_{j}^{\prime \prime}\right)}$ is pluripolar.
Then there exist an N-fold generalized cross $\boldsymbol{T}^{\prime} \subset \boldsymbol{T}$ (generated by pluripolar sets $\Sigma_{j}^{\prime} \subset A_{j}^{\prime} \times A_{j}^{\prime \prime}$ with $\left.\Sigma_{j}^{\prime} \supset \Sigma_{j}, j=1, \ldots, N\right)$ and a relatively closed pluripolar set $\widehat{M} \subset \widehat{\boldsymbol{X}}$ such that:
(A) $\widehat{M} \cap \boldsymbol{T}^{\prime} \subset M$,
(B) for every $f \in \mathcal{O}_{s}(\boldsymbol{X} \backslash M)$ the exists an $\widehat{f} \in \mathcal{O}(\widehat{\boldsymbol{X}} \backslash \widehat{M})$ such that $\widehat{f}=f$ on $\boldsymbol{T}^{\prime} \backslash M$,
(C) the set \widehat{M} is minimal in that sense that each point of \widehat{M} is singular with respect to the family $\widehat{\mathcal{F}}:=\{\widehat{f}$: $\left.f \in \mathcal{O}_{s}(\boldsymbol{X} \backslash M)\right\}-c f$. [Jar-Pfl 2000], § 3.4,
(D) if for any $j \in\{1, \ldots, N\}$ and $\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \in\left(A_{j}^{\prime} \times A_{j}^{\prime \prime}\right) \backslash \Sigma_{j}$, the fiber is thin, then \widehat{M} is analytic in $\widehat{\boldsymbol{X}}$ (and in view of (C), either $\widehat{M}=\varnothing$ or \widehat{M} must be of pure codimension one - cf. [Jar-Pfl 2000], § 3.4),
(E) if $M=S \cap \boldsymbol{X}$, where $S \varsubsetneqq U$ is an analytic subset of an open connected neighborhood $U \subset \widehat{\boldsymbol{X}}$ of \boldsymbol{X}, then $\widehat{M} \cap U_{0} \subset S$ for an open neighborhood $U_{0} \subset U$ of \boldsymbol{X} and $\widehat{f}=f$ on $\boldsymbol{X} \backslash M$ for every $f \in \mathcal{O}_{s}(\boldsymbol{X} \backslash M)$,
(F) in the situation of (E), if $U=\widehat{\boldsymbol{X}}$, then \widehat{M} is the union of all one codimensional irreducible components of S.

Observe that in the situation of (E), if $M=S \cap \boldsymbol{X}$ and (\dagger) is satisfied, then for any $j \in\{1, \ldots, N\}$ and $\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \in\left(A_{j}^{\prime} \times A_{j}^{\prime \prime}\right) \backslash \Sigma_{j}$, the fiber $M_{\left(a_{j}^{\prime}, \cdot, a_{j}^{\prime \prime}\right)}$ is analytic (in particular, thin) and therefore, by (D), the set \widehat{M} must be analytic.

It has been conjectured (in particular, in [Jar-Pfl 2003b]) that in fact conditions (E-F) are consequences of (A-D). Notice that the method of proof of (E-F) used in [Jar-Pfl 2003a] is essentially different than the one of (A-D) in [Jar-Pfl 2003b]. The aim of this paper is to prove this conjecture which finally leads to a uniform presentation of the cross theorem with singularities. Our main result is the following theorem.
Theorem 1.2. Properties (E-F) follow from (A-D).

2. Proof of Theorem 1.2

Roughly speaking, the main idea of the proof is to show that if $\widehat{M} \cap \boldsymbol{T}^{\prime} \subset M$, then $\varnothing \neq \widehat{M} \cap \Omega \subset S$ for an open set $\Omega \subset \widehat{\boldsymbol{X}}$. We will need the following extension theorems (without singularities).

Theorem 2.1. (a) (Classical cross theorem - cf. e.g. [Ale-Zer 2001].) Under the above assumptions, every function $f \in \mathcal{O}_{s}(\boldsymbol{X})$ extends holomorphically to $\widehat{\boldsymbol{X}}$.
(b) (Cross theorem for generalized crosses - cf. [Jar-Pfl 2003b], [Jar-Pfl 2007].) Under the above assumptions, every function $f \in \mathcal{O}_{s}(\boldsymbol{T}) \cap \mathcal{C}(\boldsymbol{T})$ extends holomorphically to $\widehat{\boldsymbol{X}}$.
Remark 2.2. (a) The assumptions in Theorem 2.1(b) may be essentially weakened. Namely, using the same method of proof as in [Jar-Pfl 2003b], one may easily show that every function $f \in \mathcal{O}_{s}(\boldsymbol{T})$ such that for any $j \in\{1, \ldots, N\}$ and $b_{j} \in D_{j}$, the function $A_{j}^{\prime} \times A_{j}^{\prime \prime} \backslash \Sigma_{j} \ni\left(z_{j}^{\prime}, z_{j}^{\prime \prime}\right) \longmapsto f\left(z_{j}^{\prime}, b_{j}, z_{j}^{\prime \prime}\right)$ is continuous, extends holomorphically to $\widehat{\boldsymbol{X}}$.
(b) We point out that it is still an open problem whether for $N \geq 3$ and arbitrary \boldsymbol{T}, Theorem 2.1(b) remains true for every $f \in \mathcal{O}_{s}(\boldsymbol{T})$.
Remark 2.3. If for all $j \in\{1, \ldots, N\}$ and $\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \in\left(A_{j}^{\prime} \times A_{j}^{\prime \prime}\right) \backslash \Sigma_{j}$, the fiber $M_{\left(a_{j}^{\prime}, \cdot, a_{j}^{\prime \prime}\right)}$ is pluripolar, then the sets $\left\{\left(a_{j}^{\prime}, a_{j}, a_{j}^{\prime \prime}\right) \in A_{j}^{\prime} \times A_{j} \times A_{j}^{\prime \prime}:\left(a_{j}^{\prime}, a_{j}^{\prime \prime}\right) \notin \Sigma_{j}, a_{j} \notin M_{\left(a_{j}^{\prime}, \cdot, a_{j}^{\prime \prime}\right)}\right\}, j=1, \ldots, N$, are non-pluripolar (cf. [Jar-Pfl 2007]).
Lemma 2.4. Let $Q \subset \widehat{\boldsymbol{X}}$ be an arbitrary analytic set of pure codimension one and let $\boldsymbol{T} \subset \boldsymbol{X}$ be an arbitrary generalized cross. Then $Q \cap \boldsymbol{T} \neq \varnothing$.
Lemma 2.5. Condition (F) follows from ($\mathrm{A}-\mathrm{E}$).
Thus to prove Theorem 1.2 we only need to check that (E) follows from (A-D).
Lemma 2.6. Suppose that ($\mathrm{A}-\mathrm{D}$) are true and in the situation of (E) we know that $\widehat{M} \cap \boldsymbol{X} \subset M$. Then $\widehat{f}=f$ on $\boldsymbol{X} \backslash M$. Thus, the proof of (E) reduces to the inclusion $\widehat{M} \cap U_{0} \subset S$.
Lemma 2.7. If condition (E) is true with $U=\widehat{\boldsymbol{X}}$ (and arbitrary other elements), then it is true with general U. Thus to prove Theorem 1.2 we only need to check that (E) with $U=\widehat{\boldsymbol{X}}$ follows from (A-D).

Lemma 2.8. To prove (E) with $U=\widehat{\boldsymbol{X}}$ we may assume that $S=h^{-1}(0)$ with $h \in \mathcal{O}(\widehat{\boldsymbol{X}}), h \not \equiv 0$.

References

[Ale-Zer 2001] O. Alehyane, A. Zeriahi, Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques, Ann. Polon. Math. 76 (2001), 245-278.
[Jar-Pfl 2000] M. Jarnicki, P. Pflug, Extension of Holomorphic Functions, de Gruyter Expositions in Mathematics 34, Walter de Gruyter, 2000.
[Jar-Pfl 2003a] M. Jarnicki, P. Pflug, An extension theorem for separately holomorphic functions with analytic singularities, Ann. Polon. Math. 80 (2003), 143-161.
[Jar-Pfl 2003b] M. Jarnicki, P. Pflug, An extension theorem for separately holomorphic functions with pluripolar singularities, Trans. Amer. Math. Soc. 355 (2003), 1251-1267.
[Jar-Pfl 2007] M. Jarnicki, P. Pflug, A general cross theorem with singularities, Analysis Munich 27 (2007), 181-212.

