Cross theorem with singularities pluripolar vs. analytic case

Marek Jarnicki, Peter Pflug

1. INTRODUCTION. MAIN RESULT

We fix an integer $N \ge 2$ and let D_j be a (connected) Riemann domain of holomorphy over \mathbb{C}^{n_j} , $j = 1, \ldots, N$. Let $\emptyset \ne A_j \subset D_j$ be locally pluringular, $j = 1, \ldots, N$.

We will use the following conventions. For arbitrary $B_j \subset D_j$, $j = 1, \ldots, N$, we write $B'_j := B_1 \times \cdots \times B_{j-1}$, $j = 2, \ldots, N$, $B''_j := B_{j+1} \times \cdots \times B_N$, $j = 1, \ldots, N-1$. Thus, for each $j \in \{1, \ldots, N\}$, we may write $B_1 \times \cdots \times B_N = B'_j \times B_j \times B''_j$ (with natural exceptions for $j \in \{1, N\}$). Analogously, a point $a = (a_1, \ldots, a_N) \in D_1 \times \cdots \times D_N$ will be frequently written as $a = (a'_j, a_j, a''_j)$, where $a'_j := (a_1, \ldots, a_{j-1})$, $a''_j := (a_{j+1}, \ldots, a_N)$ (with obvious exceptions for $j \in \{1, N\}$).

We define an N-fold cross

$$\boldsymbol{X} = \boldsymbol{X}((D_j, A_j)_{j=1}^N) := \bigcup_{j=1}^N A'_j \times D_j \times A''_j.$$

One may prove that X is connected.

More generally, for arbitrary pluripolar sets $\Sigma_j \subset A'_j \times A''_j$, j = 1, ..., N, we define an N-fold generalized cross

$$\boldsymbol{T} = \boldsymbol{T}((D_j, A_j, \Sigma_j)_{j=1}^N) := \bigcup_{j=1}^N \left\{ (a'_j, z_j, a''_j) \in A'_j \times D_j \times A''_j : (a'_j, a''_j) \notin \Sigma_j \right\} \subset \boldsymbol{X}.$$

We say that **T** is generated by $\Sigma_1, \ldots, \Sigma_N$. Obviously, $\mathbf{X} = \mathbf{T}((D_j, A_j, \emptyset)_{i=1}^{\infty})$.

Observe that any 2–fold generalized cross is in fact a 2–fold cross.

Let h_{A_i,D_j} denote the relative extremal function of A_j in D_j , $j = 1, \ldots, N$. Recall that

$$h_{A,D} := \sup\{u \in \mathcal{PSH}(D) : u \le 1, \ u|_A \le 0\}.$$

Put $\widehat{\mathbf{X}} := \{(z_1, \ldots, z_N) \in D_1 \times \cdots \times D_N : h^*_{A_1, D_1}(z_1) + \cdots + h^*_{A_N, D_N}(z_N) < 1\}$, where * stands for the upper semicontinuous regularization. One may prove that $\widehat{\mathbf{X}}$ is a (connected) domain of holomorphy and $\mathbf{X} \subset \widehat{\mathbf{X}}$.

Let $M \subset \mathbf{T}$ be relatively closed. We say that a function $f: \mathbf{T} \setminus M \longrightarrow \mathbb{C}$ is separately holomorphic on $\mathbf{T} \setminus M$ (we write $f \in \mathcal{O}_s(\mathbf{T} \setminus M)$) if for any $j \in \{1, \ldots, N\}$ and $(a'_j, a''_j) \in (A'_j \times A''_j) \setminus \Sigma_j$, the function $D_j \setminus M_{(a'_j, \cdot, a''_j)} \ni z_j \longmapsto f(a'_j, z_j, a''_j) \in \mathbb{C}$ is holomorphic in $D_j \setminus M_{(a'_j, \cdot, a''_j)}$, where $M_{(a'_j, \cdot, a''_j)} := \{z_j \in D_j : (a'_j, z_j, a''_j) \in M\}$ is the fiber of M over (a'_j, a''_j) .

We are going to discuss the following extension theorem with singularities proved in [Jar-Pfl 2003a], [Jar-Pfl 2003b], see also [Jar-Pfl 2007].

Theorem 1.1 (Extension theorem with singularities for crosses). Under the above assumptions, let $T \subset X$ be an N-fold generalized cross and let $M \subset X$ be a relatively closed set such that

(†) for all $j \in \{1, \ldots, N\}$ and $(a'_j, a''_j) \in (A'_j \times A''_j) \setminus \Sigma_j$, the fiber $M_{(a'_j, \cdot, a''_j)}$ is pluripolar.

Then there exist an N-fold generalized cross $\mathbf{T}' \subset \mathbf{T}$ (generated by pluripolar sets $\Sigma'_j \subset A'_j \times A''_j$ with $\Sigma'_j \supset \Sigma_j, j = 1, ..., N$) and a relatively closed pluripolar set $\widehat{M} \subset \widehat{\mathbf{X}}$ such that:

- (A) $\widehat{M} \cap \mathbf{T}' \subset M$,
- (B) for every $f \in \mathcal{O}_s(\mathbf{X} \setminus M)$ the exists an $\widehat{f} \in \mathcal{O}(\widehat{\mathbf{X}} \setminus \widehat{M})$ such that $\widehat{f} = f$ on $\mathbf{T}' \setminus M$,
- (C) the set \widehat{M} is minimal in that sense that each point of \widehat{M} is singular with respect to the family $\widehat{\mathcal{F}} := \{\widehat{f} : f \in \mathcal{O}_s(\mathbf{X} \setminus M)\} cf.$ [Jar-Pfl 2000], § 3.4,
- (D) if for any $j \in \{1, ..., N\}$ and $(a'_j, a''_j) \in (A'_j \times A''_j) \setminus \Sigma_j$, the fiber is thin, then \widehat{M} is analytic in \widehat{X} (and in view of (C), either $\widehat{M} = \emptyset$ or \widehat{M} must be of pure codimension one cf. [Jar-Pfl 2000], § 3.4),
- (E) if $M = S \cap X$, where $S \subsetneq U$ is an analytic subset of an open connected neighborhood $U \subset \widehat{X}$ of X, then $\widehat{M} \cap U_0 \subset S$ for an open neighborhood $U_0 \subset U$ of X and $\widehat{f} = f$ on $X \setminus M$ for every $f \in \mathcal{O}_s(X \setminus M)$,
- (F) in the situation of (E), if $U = \hat{X}$, then \hat{M} is the union of all one codimensional irreducible components of S.

Observe that in the situation of (E), if $M = S \cap \mathbf{X}$ and (†) is satisfied, then for any $j \in \{1, \ldots, N\}$ and $(a'_j, a''_j) \in (A'_j \times A''_j) \setminus \Sigma_j$, the fiber $M_{(a'_j, \cdot, a''_j)}$ is analytic (in particular, thin) and therefore, by (D), the set \widehat{M} must be analytic.

It has been conjectured (in particular, in [Jar-Pfl 2003b]) that in fact conditions (E–F) are consequences of (A–D). Notice that the method of proof of (E–F) used in [Jar-Pfl 2003a] is essentially different than the one of (A–D) in [Jar-Pfl 2003b]. The aim of this paper is to prove this conjecture which finally leads to a uniform presentation of the cross theorem with singularities. Our main result is the following theorem.

Theorem 1.2. Properties (E–F) follow from (A–D).

2. Proof of Theorem 1.2

Roughly speaking, the main idea of the proof is to show that if $\widehat{M} \cap \mathbf{T}' \subset M$, then $\emptyset \neq \widehat{M} \cap \Omega \subset S$ for an open set $\Omega \subset \widehat{\mathbf{X}}$. We will need the following extension theorems (without singularities).

Theorem 2.1. (a) (Classical cross theorem — cf. e.g. [Ale-Zer 2001].) Under the above assumptions, every function $f \in \mathcal{O}_s(\mathbf{X})$ extends holomorphically to $\widehat{\mathbf{X}}$.

(b) (Cross theorem for generalized crosses — cf. [Jar-Pfl 2003b], [Jar-Pfl 2007].) Under the above assumptions, every function $f \in \mathcal{O}_s(\mathbf{T}) \cap \mathcal{C}(\mathbf{T})$ extends holomorphically to $\widehat{\mathbf{X}}$.

Remark 2.2. (a) The assumptions in Theorem 2.1(b) may be essentially weakened. Namely, using the same method of proof as in [Jar-Pfl 2003b], one may easily show that every function $f \in \mathcal{O}_s(\mathbf{T})$ such that for any $j \in \{1, \ldots, N\}$ and $b_j \in D_j$, the function $A'_j \times A''_j \setminus \Sigma_j \ni (z'_j, z''_j) \longmapsto f(z'_j, b_j, z''_j)$ is continuous, extends holomorphically to $\widehat{\mathbf{X}}$.

(b) We point out that it is still an *open problem* whether for $N \ge 3$ and arbitrary T, Theorem 2.1(b) remains true for every $f \in \mathcal{O}_s(T)$.

Remark 2.3. If for all $j \in \{1, \ldots, N\}$ and $(a'_j, a''_j) \in (A'_j \times A''_j) \setminus \Sigma_j$, the fiber $M_{(a'_j, \cdot, a''_j)}$ is pluripolar, then the sets $\{(a'_j, a_j, a''_j) \in A'_j \times A_j \times A''_j : (a'_j, a''_j) \notin \Sigma_j, a_j \notin M_{(a'_j, \cdot, a''_j)}\}, j = 1, \ldots, N$, are non-pluripolar (cf. [Jar-Pfl 2007]).

Lemma 2.4. Let $Q \subset \widehat{X}$ be an arbitrary analytic set of pure codimension one and let $T \subset X$ be an arbitrary generalized cross. Then $Q \cap T \neq \emptyset$.

Lemma 2.5. Condition (F) follows from (A–E).

Thus to prove Theorem 1.2 we only need to check that (E) follows from (A–D).

Lemma 2.6. Suppose that (A–D) are true and in the situation of (E) we know that $\widehat{M} \cap \mathbf{X} \subset M$. Then $\widehat{f} = f$ on $\mathbf{X} \setminus M$. Thus, the proof of (E) reduces to the inclusion $\widehat{M} \cap U_0 \subset S$.

Lemma 2.7. If condition (E) is true with $U = \widehat{X}$ (and arbitrary other elements), then it is true with general U. Thus to prove Theorem 1.2 we only need to check that (E) with $U = \widehat{X}$ follows from (A–D).

Lemma 2.8. To prove (E) with $U = \widehat{X}$ we may assume that $S = h^{-1}(0)$ with $h \in \mathcal{O}(\widehat{X}), h \neq 0$.

References

- [Ale-Zer 2001] O. Alehyane, A. Zeriahi, Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques, Ann. Polon. Math. 76 (2001), 245–278.
- [Jar-Pfl 2000] M. Jarnicki, P. Pflug, *Extension of Holomorphic Functions*, de Gruyter Expositions in Mathematics 34, Walter de Gruyter, 2000.
- [Jar-Pfl 2003a] M. Jarnicki, P. Pflug, An extension theorem for separately holomorphic functions with analytic singularities, Ann. Polon. Math. 80 (2003), 143–161.
- [Jar-Pfl 2003b] M. Jarnicki, P. Pflug, An extension theorem for separately holomorphic functions with pluripolar singularities, Trans. Amer. Math. Soc. 355 (2003), 1251–1267.

[Jar-Pfl 2007] M. Jarnicki, P. Pflug, A general cross theorem with singularities, Analysis Munich 27 (2007), 181–212.