FINELY PLURISUBHARMONIC FUNCTIONS

JAN WIEGERINCK

The plurifine topology \mathcal{F} on \mathbb{C}^n is the weakest topology in which all plurisubharmonic functions are continuous, in analogy with the H. Cartan fine topology on \mathbb{R}^n , in particular on $\mathbb{C} \cong \mathbb{R}^2$. The plurifine topology \mathcal{F} is clearly biholomorphically invariant. We consider two concepts of plurifinely plurisubharmonic functions, (\mathcal{F} PSH functions). a strong concept defined by \mathcal{F} -local uniform approximation with plurisubharmonic functions, and a weak concept defined by demanding that the restriction to complex lines be finely subharmonic.

We thereby draw on the theory of *finely sub-* or superharmonic functions defined on finely open subsets of \mathbb{C} or of \mathbb{R}^N . These are defined by demanding fine uppersemicintinuity and a Mean Value Inequality with respect to swept out point mass to the complement of a sufficiently large set of fine domains. This is in analogy with the swept out point mass to the complement of a ball, which gives the usual harmonic measure on the ball.

The plurifine topology on \mathbb{C}^n induces on each complex line L in \mathbb{C}^n the Cartan fine topology on $L \simeq \mathbb{C}$.

Strong \mathcal{F} -plurisubharmonicity is obviously kept under biholomorphically transformations, and strongly \mathcal{F} -plurisubharmonic functions are finely subharmonic on the corresponding domain in \mathbb{R}^N , because the approximating functions have these properties.

We show that the same results hold for the weak concept. In analogy with ordinary plurisubharmonic functions we have the following.

Theorem 1. The weakly \mathcal{F} -plurisubharmonic functions f may be characterized by being \mathcal{F} -upper semicontinuous and such that $f \circ h$ is \mathbb{R}^{2n} -finely subharmonic (or identically $-\infty$ in some fine component of its domain of definition) for every \mathbb{C} -linear bijection h of \mathbb{C}^n .

Theorem 2. If f is weakly \mathcal{F} -plurisubharmonic on an \mathcal{F} -domain Ω , and h is a holomorphic map on a \mathcal{F} -domain D such that $h(D) \subset \Omega$, then $f \circ h$ is weakly \mathcal{F} -plurisubharmonic on D.

The weak concepts are closed under \mathcal{F} -locally uniform convergence, and seem altogether to be more useful. We do not know whether strongly and weakly \mathcal{F} -plurisubharmonic (resp. weakly \mathcal{F} -holomorphic) functions are actually the same.

Other results shortly touched upon include the following. The convex cone of all weakly \mathcal{F} -plurisubharmonic functions on Ω is closed under \mathcal{F} -locally uniform convergence, and stable under pointwise infimum for lower directed families and under pointwise supremum for finite families. Namely, for any \mathcal{F} -locally upper bounded family of weakly \mathcal{F} -plurisubharmonic functions f_{α} on Ω , the \mathcal{F} -upper semicontinuous regularization f^* of the pointwise supremum $f = \sup_{\alpha} f_{\alpha}$ is likewise weakly \mathcal{F} -plurisubharmonic, and the exceptional set $\{f < f^*\}$ is pluripolar, as expected from a theorem of Bedford and Taylor. Furthermore, there is a removable singularity theorem for weakly \mathcal{F} -plurisubharmonic functions.

The results discussed in this lecture were obtained in collaboration with Bent Fuglede, Sais El Marzguioui and Mohamed El Kadiri.

Korteweg-de Vries Institute for Mathematics, University of Amsterdam $E\text{-}mail\ address:\ j.j.o.o.wiegerinck@uva.nl$

Date: December 7 2009.