Definition 1 (Bergman kernel). Let $A^2(\Omega)$ denotes Bergman space, i.e. $A^2(\Omega) = \mathcal{O}(\Omega) \cap \mathcal{L}^2(\Omega)$. The Bergman kernel $K_{\Omega}(z, w)$ is the reproducing kernel of $A^2(\Omega)$, given by the Riesz theorem:

$$\forall f \in A^2(\Omega), \ \forall z \in \Omega \ f(z) = \int_{\Omega} K_{\Omega}(z, w) f(w) \ dV.$$

Definition 2 (Szegö kernel). Let $H^2(\Omega)$ denotes Hardy space. the Szegö kernel $S_{\Omega}(z, w)$ is the reproducing kernel of $H^2(\Omega)$:

$$\forall f \in H^2(\Omega) \ \forall z \in \Omega \ f(z) = \int_{\partial \Omega} S_{\Omega}(z, w) f(w) \ dS.$$

Main goal of the lecture was to prove the following theorem

Theorem 1 (see [1]). Let $\Omega \subset \mathbb{C}^n$ be a pseudoconvex domain with \mathcal{C}^2 -smooth boundary. Then for any $a \in (0, 1)$, there exists a constant C > 0 such that

$$\frac{S(z,z)}{K(z,z)} \le C\delta(z) |\log(\delta(z))|^{\frac{n}{a}},$$

where $\delta(z)$ denotes distance to the boundary $\partial\Omega$.

Proof of this theorem is based on the proof of Błocki's theorem from [2]:

Theorem 2. Let Ω be a bounded domain in \mathbb{C}^n , where we can find $v \in PSH(\Omega)$ and positive constants A, B, a, b such that the following estimate holds in Ω :

$$\frac{1}{A}\delta^a \le |v| \le B\delta^b.$$

Then there exists positive constants C_1 , C_2 , depending only on n, A, B, a, b and R the diameter of Ω , such that for every ζ , $w \in \Omega$ with $\delta(\zeta) \leq e^{-2}$, $\delta(w) \leq e^{-2}$ we have:

$$|g_{\Omega}(\zeta, w)| \leq \begin{cases} C_1 \frac{\delta^b(\zeta)}{\delta^a(w)} \log \frac{1}{\delta(w)} & \text{if } \delta(\zeta) \leq \frac{\delta(w)}{2} \\ C_2 \frac{\delta^{\frac{h}{n}}(w)}{\delta^{\frac{a}{n}}(\zeta)} (\log \frac{1}{\delta(w)})^{1-\frac{1}{n}} (\log \frac{1}{\delta(\zeta)})^{\frac{1}{n}} & \text{if } \delta(\zeta) \geq 2\delta(w) \end{cases}$$

where g_{Ω} denotes pluricomplex Green function of Ω .

References

- [1] Bo-Yong Chen, Siqi Fu, Comparison of the Bergman and Szegö kernels, to appear.
- [2] Z. Błocki, The Bergman metric and the pluricomplex Green function, Trans. AMS 357 (2004), 2613-2625.