CONVEX CHARACTERIZATION OF LINEARLY CONVEX DOMAINS

TOMASZ WARSZAWSKI

The talk is based on the paper [Nik-Tho 2010].
A domain $D \subset \mathbb{C}^{n}$ is called linearly convex if $\mathbb{C}^{n} \backslash D$ is a union of affine complex hyperplanes. Any set of the form

$$
\{z+\lambda X:|\lambda| \leq r\}, z \in \mathbb{C}^{n}, X \in\left(\mathbb{C}^{n}\right)_{*}, r>0
$$

is a disc. The aim is to prove the following
Theorem 1. Let $D \subset \mathbb{C}^{n}$ be a $\mathcal{C}^{1,1}$-smooth bounded domain and let U be a neighborhood of ∂D. If D contains the convex hull of any two discs in $D \cap U$ with common center then D is linearly convex.

From the proof of Theorem 1 it follows that a bounded $\mathcal{C}^{1,1}$-smooth bounded domain D is not linearly convex if and only if there are $c \in \partial D$ and a line segment $[a, b]$ in the complex affine tangent hyperplane at c such that

$$
c=\frac{a+b}{2} \text { and }[a, b] \backslash\{c\} \subset D .
$$

This is analogous to the situation for the real convexity stated in
Theorem 2. Let U be a neighborhood of the boundary of a domain $D \subset \mathbb{R}^{n}$ such that if $D \cap U$ contains two sides of a triangle then it contains the midpoint of the third side. Then D is convex.

References

[Nik-Tho 2010] N. Nikolov, P. J. Thomas, "Convex" characterization of linearly convex domains, arXiv:1009.5022v2 [math.CV].

