Disks with boundaries in totally real manifolds

Definition 1. We say that a mapping $f \in H^{\infty}(\mathbb{D}, \mathbb{C}^n)$ is a nearly smooth analytic disk (n.s.a.d.), if there exists $\lambda_0 \in \partial \mathbb{D}$ such that

 $\forall k : f^{(k)}$ extends continuously to $\overline{\mathbb{D}} \setminus \{\lambda_0\}$.

We say that such f has boundary in a compact set X, if $f(\partial \mathbb{D} \setminus \{\lambda_0\}) \subset X$.

Let L be a compact totally real n-dimensional \mathcal{C}^{∞} submanifold of \mathbb{C}^n . By \mathcal{U}_j denote the family of all bounded connected components of the set $\mathbb{C} \setminus \pi_j(L)$. For every j fix some family $\mathcal{V}_j \subset \mathcal{U}_j$ containing all but finite many elements of \mathcal{U}_j . Define

$$L_j := \pi_j(L) \cup \bigcup \mathcal{V}_j.$$

Our goal is to prove the following

Theorem 2. There exists a non-constant n.s.a.d. with boundary in L such that

$$f(\mathbb{D}) \subset L_1 \times \ldots \times L_{n-1} \times \mathbb{C}.$$

The idea of the proof. Fix $r \in (1, \infty) \setminus \mathbb{N}$ and $p \in L$. Define the spaces

$$F := \{ f \in \mathcal{C}^{r+1}(\mathbb{D}, \mathbb{C}^n) : f(1) = p, f(\partial \mathbb{D}) \subset L \},$$

F := the connected component of \widetilde{F} containing the constant map c_p ,

$$G := \mathcal{C}^r(\mathbb{D}, \mathbb{C}^n)$$

and the mapping

$$\Delta: F \ni f \mapsto \frac{\partial f}{\partial \overline{\lambda}} \in G.$$

We use the fact that the space F endowed with the C^{r+1} norm is a connected smooth Banach manifold, the mapping Δ is a C^{∞} Fredholm mapping of index 0 and $d_{c_p}\Delta$ is an isomorphism.

We use the following

Theorem 3 (Chirka). If $f \in H^{\infty}(\mathbb{D}, \mathbb{C}^n)$, $\gamma \subset \partial \mathbb{D}$ is open and $f^*(\zeta) \in L$ for $\zeta \in \gamma$, then for each k the derivative $f^{(k)}$ extends continuously to the set $\mathbb{D} \cup \gamma$.

This theorem implies that it is enough to find a non-constant $f \in H^{\infty}(\mathbb{D}, \mathbb{C}^n)$ with boundary in L which extends continuously to the set $\overline{\mathbb{D}} \setminus \{\lambda_0\}$.

We use the following

Theorem 4 (Vekua). The mapping $\Psi : \mathcal{C}^r(\mathbb{D}, \mathbb{C}^n) \to \mathcal{C}^{r+1}(\mathbb{D}, \mathbb{C}^n)$ given by

$$\Psi(f)(\lambda) = \frac{1}{\pi} \int_{\mathbb{D}} \frac{f(\zeta)}{\lambda - \zeta} \mathcal{L}^n(\zeta)$$

is well-defined and continuous. Moreover, $\frac{\partial}{\partial \overline{\lambda}} \circ \Psi = id$.

The family $\mathcal{W} := \bigcup_j \mathcal{U}_j \setminus \mathcal{V}_j$ consists of finite many open subsets of \mathbb{C} , so there exists $\rho > 0$ such that for each $U \in \mathcal{W}$ there exists some open disk $B(b_U, \rho) \subset U$. Fix some $\epsilon \in \left(0, \frac{\rho}{4\|\Psi\|}\right)$. Define

$$G_{\epsilon} := \{g = (g_1, \dots, g_n) \in G : \|g_j\|_{\mathcal{C}^r} < \epsilon \text{ for } j = 1, \dots, n-1\},\$$

$$F_{\epsilon} :=$$
 the connected component of $\Delta^{-1}(G_{\epsilon})$ containing the map c_p

and $\Delta_{\epsilon} := \Delta|_{F_{\epsilon}} : F_{\epsilon} \to G_{\epsilon}.$

We prove the following

Lemma 5. Δ_{ϵ} is not surjective.

The key point of the proof is to use the following theorem for manifolds F_{ϵ} and G_{ϵ} and the mapping Δ_{ϵ} :

Theorem 6 (Smale). Let M, N be smooth connected Banach manifolds, and let $\Phi : M \to N$ be a smooth Fredholm mapping of index 0. Suppose that:

- (1) Φ is a proper mapping,
- (2) there exist points $x_0 \in M$ and $y_0 \in N$ such that $\Phi^{-1}(\{y_0\}) = \{x_0\}$ and $d_{x_0}\Phi$ is surjective.

Then Φ is surjective.

By the Lemma 5 we get that one of the conditions (1) or (2) is not fulfilled.

We prove that following lemmas:

Lemma 7. For every $f = (f_1, \ldots, f_n) \in F_{\epsilon}$ the following condition holds:

for every $1 \leq j \leq n-1$ and $U \in \mathcal{U}_j \setminus \mathcal{V}_j$ there is $|f_j - b_U| \geq \frac{\rho}{4}$ on \mathbb{D} .

Lemma 8. Let $K \subset \mathbb{C}$ be a compact set, Ω be a connected component of $\mathbb{C} \setminus K$ and $f: \overline{\mathbb{D}} \setminus \{\lambda_0\} \to \mathbb{C}$ be continuous, analytic on \mathbb{D} and such that $f(\partial \mathbb{D} \setminus \{\lambda_0\}) \subset K$. Suppose that $f(\mathbb{D}) \cap \Omega$ is not dense in Ω . Then $f(\mathbb{D}) \cap \Omega = \emptyset$.

We use the following

Fact 9 (Alexander). Let $\lambda_0 \in \partial \mathbb{D}$, and let $f, f_k : \overline{\mathbb{D}} \setminus {\lambda_0} \to \mathbb{C}^n$ be such that $f_k \to f$ compactly uniformly and $f_k(\partial \mathbb{D} \setminus {\lambda_0}) \subset L$. Assume, that:

- (1) f_k is of class \mathcal{C}^{r+1} on U for each open set $U \subset \mathbb{D}$, dist $(U, \lambda_0) > 0$,
- (2) $\left\{\frac{\partial f_k}{\partial \overline{\lambda}}\right\}_k$ is convergent in $\mathcal{C}^r(U, \mathbb{C}^n)$ for each open set $U \subset \mathbb{D}$, dist $(U, \lambda_0) > 0$.

Then f is of class \mathcal{C}^{r+1} on U and $f_k \to f$ in $\mathcal{C}^{r+1}(U, \mathbb{C}^n)$ for each open set $U \subset \mathbb{D}$, dist $(U, \lambda_0) > 0$.

Corollary 10. If $f, f_k : \overline{\mathbb{D}} \to \mathbb{C}^n$ are such that $f_k \to f$ uniformly on $\overline{\mathbb{D}}$, $f_k(\partial \mathbb{D}) \subset L$, f_k is of class \mathcal{C}^{r+1} on \mathbb{D} and the sequence $\left\{\frac{\partial f_k}{\partial \overline{\lambda}}\right\}_k$ is convergent in $\mathcal{C}^r(\mathbb{D}, \mathbb{C}^n)$, then f is of class \mathcal{C}^{r+1} on \mathbb{D} and $f_k \to f$ in $\mathcal{C}^{r+1}(\mathbb{D}, \mathbb{C}^n)$.