
Disks with boundaries in totally real manifolds

Definition 1. We say that a mapping f ∈ H∞(D,Cn) is a nearly smooth analytic disk
(n.s.a.d.), if there exists λ0 ∈ ∂D such that

∀k : f (k) extends continuously to D \ {λ0}.
We say that such f has boundary in a compact set X, if f(∂D \ {λ0}) ⊂ X.

Let L be a compact totally real n-dimensional C∞ submanifold of Cn. By Uj denote
the family of all bounded connected components of the set C \ πj(L). For every j fix
some family Vj ⊂ Uj containing all but finite many elements of Uj. Define

Lj := πj(L) ∪
⋃
Vj.

Our goal is to prove the following

Theorem 2. There exists a non-constant n.s.a.d. with boundary in L such that

f(D) ⊂ L1 × . . .× Ln−1 × C.

The idea of the proof. Fix r ∈ (1,∞) \ N and p ∈ L. Define the spaces

F̃ := {f ∈ Cr+1(D,Cn) : f(1) = p, f(∂D) ⊂ L},
F := the connected component of F̃ containing the constant map cp,

G := Cr(D,Cn)

and the mapping

∆ : F 3 f 7→ ∂f

∂λ
∈ G.

We use the fact that the space F endowed with the Cr+1 norm is a connected smooth
Banach manifold, the mapping ∆ is a C∞ Fredholm mapping of index 0 and dcp∆ is an
isomorphism.

We use the following

Theorem 3 (Chirka). If f ∈ H∞(D,Cn), γ ⊂ ∂D is open and f ∗(ζ) ∈ L for ζ ∈ γ, then
for each k the derivative f (k) extends continuously to the set D ∪ γ.

This theorem implies that it is enough to find a non-constant f ∈ H∞(D,Cn) with
boundary in L which extends continuously to the set D \ {λ0}.

We use the following

Theorem 4 (Vekua). The mapping Ψ : Cr(D,Cn)→ Cr+1(D,Cn) given by

Ψ(f)(λ) =
1

π

∫
D

f(ζ)

λ− ζ
Ln(ζ)

is well-defined and continuous. Moreover, ∂
∂λ
◦Ψ = id.

The family W :=
⋃
j Uj \ Vj consists of finite many open subsets of C, so there exists

ρ > 0 such that for each U ∈ W there exists some open disk B(bU , ρ) ⊂ U . Fix some

ε ∈
(

0, ρ
4‖Ψ‖

)
. Define

Gε := {g = (g1, . . . , gn) ∈ G : ‖gj‖Cr < ε for j = 1, . . . , n− 1},
Fε := the connected component of ∆−1(Gε) containing the map cp

and ∆ε := ∆|Fε : Fε → Gε.



We prove the following

Lemma 5. ∆ε is not surjective.

The key point of the proof is to use the following theorem for manifolds Fε and Gε and
the mapping ∆ε:

Theorem 6 (Smale). Let M,N be smooth connected Banach manifolds, and let Φ : M →
N be a smooth Fredholm mapping of index 0. Suppose that:

(1) Φ is a proper mapping,
(2) there exist points x0 ∈ M and y0 ∈ N such that Φ−1({y0}) = {x0} and dx0Φ is

surjective.

Then Φ is surjective.

By the Lemma 5 we get that one of the conditions (1) or (2) is not fulfilled.

We prove that following lemmas:

Lemma 7. For every f = (f1, . . . , fn) ∈ Fε the following condition holds:

for every 1 ≤ j ≤ n− 1 and U ∈ Uj \ Vj there is |fj − bU | ≥
ρ

4
on D.

Lemma 8. Let K ⊂ C be a compact set, Ω be a connected component of C \ K and
f : D \ {λ0} → C be continuous, analytic on D and such that f(∂D \ {λ0}) ⊂ K. Suppose
that f(D) ∩ Ω is not dense in Ω. Then f(D) ∩ Ω = ∅.

We use the following

Fact 9 (Alexander). Let λ0 ∈ ∂D, and let f, fk : D \ {λ0} → Cn be such that fk → f
compactly uniformly and fk(∂D \ {λ0}) ⊂ L. Assume, that:

(1) fk is of class Cr+1 on U for each open set U ⊂ D, dist (U, λ0) > 0,

(2)
{
∂fk
∂λ

}
k

is convergent in Cr(U,Cn) for each open set U ⊂ D, dist (U, λ0) > 0.

Then f is of class Cr+1 on U and fk → f in Cr+1(U,Cn) for each open set U ⊂ D,
dist (U, λ0) > 0.

Corollary 10. If f, fk : D→ Cn are such that fk → f uniformly on D, fk(∂D) ⊂ L, fk

is of class Cr+1 on D and the sequence
{
∂fk
∂λ

}
k

is convergent in Cr(D,Cn), then f is of

class Cr+1 on D and fk → f in Cr+1(D,Cn).
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