Definition 1 A Riemann surface is planar if any smooth closed 1-form with compact support on X is exact.

We have proved the following theorems:

Theorem 1 (Main Theorem: Koebe 1909) Any planar Riemann surface is biholomorphic to a domain in the Riemann sphere $\hat{\mathbb{C}}$.

Theorem 2 Let X be a planar Riemann surface and $\Omega \subset X$ be an open set in X with compact closure and \mathcal{C}^{∞} boundary. Then a closed \mathcal{C}^{∞} one-form ω is exact if

$$\int_{C_i} \omega = 0$$

for any boundary curve C_i .

Theorem 3 (Weyl) For any path γ_0 : $[a, b] \longrightarrow X$ in a Riemann surface X, and any open set U of X containing γ_0 , there exists a closed one-form ω_{γ_0} in $X \setminus \{\gamma_0(a), \gamma_0(b)\}$ with support in $U \setminus \{\gamma_0(a), \gamma_0(b)\}$ such that

- (i) $\int_{\gamma} \omega_{\gamma_0} \in \mathbb{Z}$ for any closed path γ in $X \setminus \{\gamma_0(a), \gamma_0(b)\},\$
- (ii) if γ as in (i) meets γ_0 in only one point, then

$$\int_{\gamma} \omega_{\gamma_0} \in \{-1, 1\},$$

(iii) if γ as in (i) does not meet γ_0 , then

$$\int_{\gamma} \omega_{\gamma_0} = 0.$$

Theorem 4 Let X be a non-compact planar Riemann surface, and $\Omega \subset X$ a domain with compact closure and analitic boundary. Then Ω is biholomorphic to a domain in \mathbb{C} .