POLYNOMIAL ESTIMATES, EXPONENTIAL CURVES AND **DIOPHANTINE APPROXIMATION**

Let $\alpha \in (0,1) \setminus \mathbb{Q}$ and $K := \{(e^z, e^{\alpha z}) : |z| \leq 1\}$. If P is a polynomial of degree n in \mathbb{C}^n , normalized by $||P||_{K} = 1$, we obtain sharp estimates for $||P||_{\mathbb{D}^{2}}$ in terms of n, where \mathbb{D}^{2} is closed unit bidisk: we have the following

Theorem 1. Let $\alpha \in (0,1) \setminus \mathbb{Q}$ and let p_s/q_s , $s \ge 0$, be the convergents to α given by its continued fractions expansion. If $q_s \leq n < q_{s+1}$ then

$$\max\left\{\frac{n^2\log n}{2} - n^2, \left[\frac{n}{q_s}\right]\log q_{s+1} - n\right\} \le e_n(\alpha) \le \frac{n^2\log n}{2} + 9n^2 + \frac{n}{q_s}\log q_{s+1},$$

where

$$e_n(\alpha) := \log \sup\{||P||_{\mathbb{D}^2} : P \in \mathcal{P}_n, ||P||_K \le 1\}.$$

For a given sequence $\varepsilon : \mathbb{N} \to (0, +\infty)$ we introduce the sets:

$$\Gamma(\varepsilon) := \{ \alpha \in (0,1) \setminus \mathbb{Q} : \limsup_{s \to +\infty} \varepsilon(q_s) \log q_{s+1} = +\infty \},\$$
$$\mathcal{U}(\varepsilon) := \{ \alpha \in (0,1) \setminus \mathbb{Q} : \limsup_{n \to +\infty} \varepsilon(n) e_n(\alpha) = +\infty \}.$$

We have the following:

Proposition 2. i) If ε satisfies $\sum_{n=1}^{+\infty} n\varepsilon(n) < +\infty$ then the set $\Gamma(\varepsilon)$ is polar. ii) If ε is given by $\varepsilon(n) = (x(n)n^2\log n)^{-1}$, n > 1, where $x(n) \ge 1$ is an increasing sequence, then $\Gamma(\varepsilon) = (U)(\varepsilon) \subset \mathcal{S}$, where

$$\mathcal{S} := \left\{ \alpha \in (0,1) \setminus \mathbb{Q} : \limsup_{s \to +\infty} \frac{\log q_{s+1}}{q_s^2 \log q_s} = +\infty \right\}.$$