On Lempert's approximation theorem

A holomorphic function in n variables is called a Nash function if its graph is contained in an algebraic hypersurface in $\mathbb{C}^n \times \mathbb{C}$. A holomorphic map is called a Nash map if each of its components is a Nash function.

The aim of this talk is to discuss an analytic proof of a Lempert's approximation theorem saying that every holomorphic map $F: K \to V$, where K is a polynomially convex compact subset of some \mathbb{C}^n , and V is an algebraic subset of some \mathbb{C}^q , can be uniformly approximated by a Nash map $G: K \to V$.