PROPER HOLOMORPHIC MAPPINGS BETWEEN SYMMETRIZED ELLIPSOIDS

PAWEŁ ZAPAŁOWSKI

For $n \ge 2$ and p > 0 let

$$\mathbb{B}_{p,n} := \{ (z_1, \dots, z_n) \in \mathbb{C}^n : \sum_{j=1}^n |z_j|^{2p} < 1 \}$$

denote the generalized complex ellipsoid. We shall write $\mathbb{B}_n := \mathbb{B}_{1,n}$, $\mathbb{T} := \partial \mathbb{B}_1$. Note that $\mathbb{B}_{p,n}$ is bounded, complete Reinhardt domain.

Let $\pi_n = (\pi_{n,1}, \dots, \pi_{n,n}) : \mathbb{C}^n \to \mathbb{C}^n$ be defined as follows

$$\pi_{n,k}(z) = \sum_{1 \leqslant j_1 < \dots < j_k \leqslant n} z_{j_1} \dots z_{j_k}, \quad 1 \leqslant k \leqslant n, \ z = (z_1, \dots, z_n) \in \mathbb{C}^n.$$

Note that π_n is a proper holomorphic mapping with multiplicity n!, $\pi_n|_{\mathbb{B}_{p,n}}:\mathbb{B}_{p,n}\to \pi_n(\mathbb{B}_{p,n})$ is proper too.

The set

$$\mathbb{E}_{p,n} := \pi_n(\mathbb{B}_{p,n})$$

is called the *symmetrized* (p,n)-ellipsoid. Note that $\mathbb{E}_{p,n}$ is bounded $(1,2,\ldots,n)$ -balanced domain (recall that a domain $D \subset \mathbb{C}^n$ is called the (k_1,\ldots,k_n) -balanced, where $k_1,\ldots,k_n \in \mathbb{N}$, if $(\lambda^{k_1}z_1,\ldots,\lambda^{k_n}z_n) \in D$ for any $(z_1,\ldots,z_n) \in D$ and $\lambda \in \overline{\mathbb{B}}_1$).

Our aim is to give necessary and sufficient condition for existence of the proper holomorphic mappings between the symmetrized ellipsoids.

Here is some notation. Let \mathfrak{S}_n denote the group of permutations of the set $\{1,\ldots,n\}$. For $\sigma\in\mathfrak{S}_n,\ z=(z_1,\ldots,z_n)\in\mathbb{C}^n$ denote $z_\sigma:=(z_{\sigma(1)},\ldots,z_{\sigma(n)})$. Next, for any $A\subset\mathbb{C}$ put $A_*:=A\setminus\{0\},\ A_*^n:=(A_*)^n$. Moreover, for any $z=(z_1,\ldots,z_n)\in\mathbb{C}^n,\ w=(w_1,\ldots,w_n)\in\mathbb{C}^n,\ t\in\mathbb{C}$ and r>0 we put $zw:=(z_1w_1,\ldots,z_nw_n),\ tz:=(tz_1,\ldots,tz_n),$ and $z^r:=(z_1^r,\ldots,z_n^r).$

Remark 1. (a) Let $l \in \mathbb{N}$. Observe that $\mathbb{C}^n \ni z \mapsto \pi_n(z^l) \in \mathbb{C}^n$ is a symmetric polynomial mapping. According to the fundamental theorem of symmetric polynomials (see e.g. [7]) there is a unique polynomial mapping $P_l : \mathbb{C}^n \to \mathbb{C}^n$ such that $\pi_n(z^l) = P_l(\pi_n(z)), z \in \mathbb{C}^n$. In particular, $P_l(\mathbb{E}_{p,n}) = \mathbb{E}_{p/l,n}$ for any p > 0.

(b) Fix $A, B, C \in \mathbb{C}$ and put $L := (L_1, \ldots, L_n) : \mathbb{C}^n \to \mathbb{C}^n$, where

$$L_j(z) := A \sum_{k=1}^n z_k + Bz_j + C, \quad z = (z_1, \dots, z_n) \in \mathbb{C}^n, \ j = 1, \dots, n.$$

Observe that $\pi_n \circ L$ is a symmetric polynomial mapping. According to the fundamental theorem of symmetric polynomials there is a unique polynomial mapping $S_L : \mathbb{C}^n \to \mathbb{C}^n$ such that $\pi_n \circ L = S_L \circ \pi_n$.

Now we are in position to formulate our main result.

Theorem 2. There exists proper holomorphic mapping $f : \mathbb{E}_{p,n} \to \mathbb{E}_{q,n}$ iff $p/q \in \mathbb{N}$. Furthermore, if $p/q \in \mathbb{N}$, the only proper holomorphic mappings $f : \mathbb{E}_{p,n} \to \mathbb{E}_{q,n}$

(a) in case $p \neq 1$, or $q \neq 1/(2m)$, $m \in \mathbb{N}$, or $n \neq 2$ are of the form

$$(1) f = P_{p/q} \circ \phi,$$

where $P_{p/q}$ is as in Remark 1 (a) and ϕ is an automorphism of $\mathbb{E}_{p,n}$; (b) in case $p=1,\ q=1/(2m),\ m\in\mathbb{N},\ and\ n=2$ are of the form (1) or

$$f = P_m \circ \phi_{III} \circ P_2 \circ \phi_{II}$$

where ϕ_{II} (resp. ϕ_{III}) is the automorphism of $\mathbb{E}_{1,2}$ (resp. $\mathbb{E}_{1/2,2}$) defined in Corollary 4.

Corollary 3. Let $f: \mathbb{E}_{p,n} \to \mathbb{E}_{p,n}$ be a proper holomorphic self-mapping. Then fis an automorphism.

(a) If $p \neq 1$ and $(p,n) \neq (1/2,2)$ then the only automorphisms Corollary 4. of $\mathbb{E}_{n,n}$ are of the form

(2)
$$\phi_I(z_1, z_2, \dots, z_n) = (\zeta z_1, \zeta^2 z_2, \dots, \zeta^n z_n), \quad (z_1, z_2, \dots, z_n) \in \mathbb{E}_{p,n},$$

$$where \ \zeta \in \mathbb{T}.$$

(b) The only automorphisms of $\mathbb{E}_{1,n}$, are of the form

(3)
$$\phi_{II}(z) = \left(\frac{S_{L_{\varphi_{II}},1}(z)}{n(1-a_0z_1)}, \dots, \frac{S_{L_{\varphi_{II}},n}(z)}{n^n(1-a_0z_1)^n}\right), \quad z = (z_1, \dots, z_n) \in \mathbb{E}_{1,n},$$

where $S_{L_{\varphi_{II}}}=(S_{L_{\varphi_{II}},1},\ldots,S_{L_{\varphi_{II}},1})$ is the polynomial mapping as in Remark 1 (b) induced by $L_{\varphi_{II}}=(L_{\varphi_{II},1},\ldots,L_{\varphi_{II},n}):\mathbb{C}\to\mathbb{C}^n$, where

$$L_{\varphi_{II},j}(z_1,\ldots,z_n) := \zeta_1 \Big(\sum_{k=1}^n z_k - na_0 \Big) + \zeta_2 \sqrt{1 - na_0^2} \Big(\sum_{k=1}^n z_k - nz_j \Big),$$

for some $\zeta_1, \zeta_2 \in \mathbb{T}$, $a_0 \in \mathbb{R}$, $a_0^2 < \frac{1}{n}$. (c) The only automorphisms of $\mathbb{E}_{1/2,2}$ are of the form (2) or

(4)
$$\phi_{III}(z_1, z_2) = (\zeta z_1, \zeta^2 (\frac{1}{4} z_1^2 - z_2)), \quad (z_1, z_2) \in \mathbb{E}_{1/2, 2},$$
where $\zeta \in \mathbb{T}$.

Remark 5. It should be mentioned that the automorphisms of the form (2) are special cases of the automorphisms of the form (3).

References

- [1] H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249 - 256.
- [2] H. Alexander, Proper holomorphic mappings in \mathbb{C}^n , Indiana Univ. Math. J. 26 (1977), 137– 146.
- [3] G. Dini, A. Selvaggi Primicerio, Proper holomorphic mappings between generalized pseudoellipsoids, Ann. Mat. Pura Appl. 158 (1991), 219–229.
- [4] A. Edigarian, W. Zwonek, Geometry of the symmetrized polydisc, Arch. Math. 84 (2005), 364 - 374.
- [5] L. Kosiński, Geometry of quasi-circular domains and applications to tetrablock, Proc. Amer. Math. Soc. 139 (2011), 559-569.
- [6] M. Landucci, On the proper holomorphic equivalence for a class of pseudoconvex domains, Trans. Amer. Math. Soc. 282 (1984), 807-811.
- [7] I. G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford, Clarendon Press, 1995.
- [8] P. Zapałowski, Geometry of symmetrized ellipsoids, Univ. Iagel. Acta Math. 46 (2008), 105-116.