PROPER HOLOMORPHIC MAPPINGS BETWEEN SYMMETRIZED ELLIPSOIDS

PAWEŁ ZAPAŁOWSKI

For $n \geqslant 2$ and $p>0$ let

$$
\mathbb{B}_{p, n}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: \sum_{j=1}^{n}\left|z_{j}\right|^{2 p}<1\right\}
$$

denote the generalized complex ellipsoid. We shall write $\mathbb{B}_{n}:=\mathbb{B}_{1, n}, \mathbb{T}:=\partial \mathbb{B}_{1}$. Note that $\mathbb{B}_{p, n}$ is bounded, complete Reinhardt domain.

Let $\pi_{n}=\left(\pi_{n, 1}, \ldots, \pi_{n, n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be defined as follows

$$
\pi_{n, k}(z)=\sum_{1 \leqslant j_{1}<\cdots<j_{k} \leqslant n} z_{j_{1}} \ldots z_{j_{k}}, \quad 1 \leqslant k \leqslant n, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}
$$

Note that π_{n} is a proper holomorphic mapping with multiplicity $n!,\left.\pi_{n}\right|_{\mathbb{B}_{p, n}}: \mathbb{B}_{p, n} \rightarrow$ $\pi_{n}\left(\mathbb{B}_{p, n}\right)$ is proper too.

The set

$$
\mathbb{E}_{p, n}:=\pi_{n}\left(\mathbb{B}_{p, n}\right)
$$

is called the symmetrized (p, n)-ellipsoid. Note that $\mathbb{E}_{p, n}$ is bounded $(1,2, \ldots, n)$ balanced domain (recall that a domain $D \subset \mathbb{C}^{n}$ is called the $\left(k_{1}, \ldots, k_{n}\right)$-balanced, where $k_{1}, \ldots, k_{n} \in \mathbb{N}$, if $\left(\lambda^{k_{1}} z_{1}, \ldots, \lambda^{k_{n}} z_{n}\right) \in D$ for any $\left(z_{1}, \ldots, z_{n}\right) \in D$ and $\lambda \in \overline{\mathbb{B}}_{1}$).

Our aim is to give necessary and sufficient condition for existence of the proper holomorphic mappings between the symmetrized ellipsoids.

Here is some notation. Let \mathfrak{S}_{n} denote the group of permutations of the set $\{1, \ldots, n\}$. For $\sigma \in \mathfrak{S}_{n}, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ denote $z_{\sigma}:=\left(z_{\sigma(1)}, \ldots, z_{\sigma(n)}\right)$. Next, for any $A \subset \mathbb{C}$ put $A_{*}:=A \backslash\{0\}, A_{*}^{n}:=\left(A_{*}\right)^{n}$. Moreover, for any $z=\left(z_{1}, \ldots, z_{n}\right) \in$ $\mathbb{C}^{n}, w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}, t \in \mathbb{C}$ and $r>0$ we put $z w:=\left(z_{1} w_{1}, \ldots, z_{n} w_{n}\right)$, $t z:=\left(t z_{1}, \ldots, t z_{n}\right)$, and $z^{r}:=\left(z_{1}^{r}, \ldots, z_{n}^{r}\right)$.

Remark 1. (a) Let $l \in \mathbb{N}$. Observe that $\mathbb{C}^{n} \ni z \mapsto \pi_{n}\left(z^{l}\right) \in \mathbb{C}^{n}$ is a symmetric polynomial mapping. According to the fundamental theorem of symmetric polynomials (see e.g. [7]) there is a unique polynomial mapping $P_{l}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that $\pi_{n}\left(z^{l}\right)=P_{l}\left(\pi_{n}(z)\right), z \in \mathbb{C}^{n}$. In particular, $P_{l}\left(\mathbb{E}_{p, n}\right)=\mathbb{E}_{p / l, n}$ for any $p>0$.
(b) Fix $A, B, C \in \mathbb{C}$ and put $L:=\left(L_{1}, \ldots, L_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, where

$$
L_{j}(z):=A \sum_{k=1}^{n} z_{k}+B z_{j}+C, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}, j=1, \ldots, n
$$

Observe that $\pi_{n} \circ L$ is a symmetric polynomial mapping. According to the fundamental theorem of symmetric polynomials there is a unique polynomial mapping $S_{L}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that $\pi_{n} \circ L=S_{L} \circ \pi_{n}$.

Now we are in position to formulate our main result.
Theorem 2. There exists proper holomorphic mapping $f: \mathbb{E}_{p, n} \rightarrow \mathbb{E}_{q, n}$ iff $p / q \in \mathbb{N}$. Furthermore, if $p / q \in \mathbb{N}$, the only proper holomorphic mappings $f: \mathbb{E}_{p, n} \rightarrow \mathbb{E}_{q, n}$
(a) in case $p \neq 1$, or $q \neq 1 /(2 m), m \in \mathbb{N}$, or $n \neq 2$ are of the form

$$
\begin{equation*}
f=P_{p / q} \circ \phi, \tag{1}
\end{equation*}
$$

where $P_{p / q}$ is as in Remark 1 (a) and ϕ is an automorphism of $\mathbb{E}_{p, n}$;
(b) in case $p=1, q=1 /(2 m), m \in \mathbb{N}$, and $n=2$ are of the form (1) or

$$
f=P_{m} \circ \phi_{I I I} \circ P_{2} \circ \phi_{I I},
$$

where $\phi_{I I}$ (resp. $\phi_{I I I}$) is the automorphism of $\mathbb{E}_{1,2}$ (resp. $\mathbb{E}_{1 / 2,2}$) defined in Corollary 4.
Corollary 3. Let $f: \mathbb{E}_{p, n} \rightarrow \mathbb{E}_{p, n}$ be a proper holomorphic self-mapping. Then f is an automorphism.

Corollary 4. (a) If $p \neq 1$ and $(p, n) \neq(1 / 2,2)$ then the only automorphisms of $\mathbb{E}_{p, n}$ are of the form

$$
\begin{equation*}
\phi_{I}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\left(\zeta z_{1}, \zeta^{2} z_{2}, \ldots, \zeta^{n} z_{n}\right), \quad\left(z_{1}, z_{2} \ldots, z_{n}\right) \in \mathbb{E}_{p, n} \tag{2}
\end{equation*}
$$

where $\zeta \in \mathbb{T}$.
(b) The only automorphisms of $\mathbb{E}_{1, n}$, are of the form

$$
\begin{equation*}
\phi_{I I}(z)=\left(\frac{S_{L_{\varphi_{I I}}, 1}(z)}{n\left(1-a_{0} z_{1}\right)}, \ldots, \frac{S_{L_{\varphi_{I I}}, n}(z)}{n^{n}\left(1-a_{0} z_{1}\right)^{n}}\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{E}_{1, n} \tag{3}
\end{equation*}
$$

where $S_{L_{\varphi_{I I}}}=\left(S_{L_{\varphi_{I I}}, 1}, \ldots, S_{L_{\varphi_{I I}}, 1}\right)$ is the polynomial mapping as in Remark 1 (b) induced by $L_{\varphi_{I I}}=\left(L_{\varphi_{I I}, 1}, \ldots, L_{\varphi_{I I}, n}\right): \mathbb{C} \rightarrow \mathbb{C}^{n}$, where

$$
L_{\varphi_{I I}, j}\left(z_{1}, \ldots, z_{n}\right):=\zeta_{1}\left(\sum_{k=1}^{n} z_{k}-n a_{0}\right)+\zeta_{2} \sqrt{1-n a_{0}^{2}}\left(\sum_{k=1}^{n} z_{k}-n z_{j}\right)
$$

for some $\zeta_{1}, \zeta_{2} \in \mathbb{T}, a_{0} \in \mathbb{R}, a_{0}^{2}<\frac{1}{n}$.
(c) The only automorphisms of $\mathbb{E}_{1 / 2,2}$ are of the form (2) or

$$
\begin{equation*}
\phi_{I I I}\left(z_{1}, z_{2}\right)=\left(\zeta z_{1}, \zeta^{2}\left(\frac{1}{4} z_{1}^{2}-z_{2}\right)\right), \quad\left(z_{1}, z_{2}\right) \in \mathbb{E}_{1 / 2,2} \tag{4}
\end{equation*}
$$

where $\zeta \in \mathbb{T}$.
Remark 5. It should be mentioned that the automorphisms of the form (2) are special cases of the automorphisms of the form (3).

References

[1] H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249-256.
[2] H. Alexander, Proper holomorphic mappings in \mathbb{C}^{n}, Indiana Univ. Math. J. 26 (1977), 137146.
[3] G. Dini, A. Selvaggi Primicerio, Proper holomorphic mappings between generalized pseudoellipsoids, Ann. Mat. Pura Appl. 158 (1991), 219-229.
[4] A. Edigarian, W. Zwonek, Geometry of the symmetrized polydisc, Arch. Math. 84 (2005), 364-374.
[5] Ł. Kosiński, Geometry of quasi-circular domains and applications to tetrablock, Proc. Amer. Math. Soc. 139 (2011), 559-569.
[6] M. Landucci, On the proper holomorphic equivalence for a class of pseudoconvex domains, Trans. Amer. Math. Soc. 282 (1984), 807-811.
[7] I. G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford, Clarendon Press, 1995.
[8] P. Zapałowski, Geometry of symmetrized ellipsoids, Univ. Iagel. Acta Math. 46 (2008), 105116.

