PROPER HOLOMORPHIC MAPPINGS BETWEEN COMPLEX ELLIPSOIDS AND GENERALIZED HARTOGS TRIANGLES

PAWEŁ ZAPAŁOWSKI

For any bounded domains $D, G \subset \mathbb{C}^{n}$ let $\operatorname{Prop}(D, G)$ denote the set of proper holomorphic mappings $F: D \rightarrow G$, where proper, as usual, means $F^{-1}(K)$ compact in D for every compact $K \subset G$, and let $\operatorname{Aut}(D)$ denote the automorphism group of D, i.e. the set of all biholomorphic self-mappings $F: D \rightarrow D$. Moreover, we shall write $\operatorname{Prop}(D):=\operatorname{Prop}(D, D)$.

Our aim is to characterize the sets $\operatorname{Prop}(D, G)$ and $\operatorname{Aut}(D)$ when D, G belong either to the class of the complex ellipsoids or the so-called generalized Hartogs triangles.

Here is some notation. Let Σ_{n} denote the group of the permutations of the set $\{1, \ldots, n\}$. For $\sigma \in \Sigma_{n}, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ denote $z_{\sigma}:=\left(z_{\sigma(1)}, \ldots, z_{\sigma(n)}\right)$ and $\Sigma_{n}(z):=\left\{\sigma \in \Sigma_{n}: z_{\sigma}=z\right\}$. We shall also write $\sigma(z):=z_{\sigma}$.

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{>0}^{n}$ put

$$
\Psi_{\alpha}(z):=z^{\alpha}:=\left(z_{1}^{\alpha_{1}}, \ldots, z_{n}^{\alpha_{n}}\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}
$$

If, moreover, $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{R}_{>0}^{n}$ we shall write $\alpha \beta:=\left(\alpha_{1} \beta_{1}, \ldots, \alpha_{n} \beta_{n}\right)$ and $1 / \beta:=\left(1 / \beta_{1}, \ldots, 1 / \beta_{n}\right)$.

Finally, let $\mathbb{U}(n)$ denote the set of unitary mappings $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

1. Complex ellipsoids

For $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{>0}^{n}, n \geq 2$, define the complex ellipsoid

$$
\mathbb{E}_{p}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: \sum_{j=1}^{n}\left|z_{j}\right|^{2 p_{j}}<1\right\}
$$

Note that $\mathbb{B}_{n}:=\mathbb{E}_{(1, \ldots, 1)}$ is the unit ball in \mathbb{C}^{n}. We shall write $\mathbb{D}:=\mathbb{B}_{1}, \mathbb{T}:=\partial \mathbb{D}$. Moreover, if $\alpha / \beta \in \mathbb{N}^{n}$ then $\Psi_{\alpha / \beta} \in \operatorname{Prop}\left(\mathbb{E}_{\alpha}, \mathbb{E}_{\beta}\right)$.

Theorem 1 ([7], [4]). Assume that $n \geq 2, p, q \in \mathbb{R}_{>0}^{n}$.
(a) The following conditions are equivalent
(i) $\operatorname{Prop}\left(\mathbb{E}_{p}, \mathbb{E}_{q}\right) \neq \varnothing$;
(ii) there exists $\sigma \in \Sigma_{n}$ such that $p_{\sigma} / q \in \mathbb{N}^{n}$.
(b) If $p, q \in \mathbb{N}^{n}$, then the following conditions are equivalent
(i) $F \in \operatorname{Prop}\left(\mathbb{E}_{p}, \mathbb{E}_{q}\right)$;
(ii) $F=\phi \circ \Psi_{p_{\sigma} / q} \circ \sigma$, where $\sigma \in \Sigma_{n}$ is such that $p_{\sigma} / q \in \mathbb{N}^{n}$ and $\phi \in \operatorname{Aut}\left(\mathbb{E}_{q}\right)$. In particular, $\operatorname{Prop}\left(\mathbb{E}_{p}\right)=\operatorname{Aut}\left(\mathbb{E}_{p}\right)$.
(c) If $0 \leq k \leq n, p \in\{1\}^{k} \times\left(\mathbb{R}_{>0} \backslash\{1\}\right)^{n-k}$. Then

$$
\operatorname{Aut}\left(\mathbb{E}_{p}\right)=\left\{E_{H, \zeta, \sigma}: H \in \operatorname{Aut}\left(\mathbb{B}_{k}\right), \zeta \in \mathbb{T}^{n-k}, \sigma \in \Sigma_{n}(p)\right\}
$$

where, for $z=\left(z^{\prime}, z_{k+1}, \ldots, z_{n}\right) \in \mathbb{E}_{p} \subset \mathbb{C}^{k} \times \mathbb{C}^{n-k}, \zeta=\left(\zeta_{k+1}, \ldots, \zeta_{n}\right) \in \mathbb{T}^{n-k}$, $a^{\prime}:=H^{-1}\left(0^{\prime}\right)$, and $\sigma \in \Sigma_{n}(p)$ we put

$$
\begin{gathered}
E_{H, \zeta, \sigma}(z):=\left(H\left(z^{\prime}\right), \zeta_{k+1} z_{\sigma(k+1)}\left(\frac{\sqrt{1-\left\|a^{\prime}\right\|^{2}}}{1-\left\langle z^{\prime}, a^{\prime}\right\rangle}\right)^{1 / p_{\sigma(k+1)}},\right. \\
\left.\ldots, \zeta_{n} z_{\sigma(n)}\left(\frac{\sqrt{1-\left\|a^{\prime}\right\|^{2}}}{1-\left\langle z^{\prime}, a^{\prime}\right\rangle}\right)^{1 / p_{\sigma(n)}}\right) .
\end{gathered}
$$

In the general case thesis of Theorem 1 (b) is no longer true (take, for instance, $\Psi_{(2,2)} \circ H \circ \Psi_{(2,2)} \in \operatorname{Prop}\left(\mathbb{E}_{(2,2)}, \mathbb{E}_{(1 / 2,1 / 2)}\right)$, where $\left.H \in \operatorname{Aut}\left(\mathbb{B}_{2}\right), H(0) \neq 0\right)$.

Nevertheless, from the proof of Theorem 1.1 in [4] we easily derive the following
Theorem 2. Assume that $n \geq 2, p, q \in \mathbb{R}_{>0}^{n}$. Then the following conditions are equivalent
(i) $F \in \operatorname{Prop}\left(\mathbb{E}_{p}, \mathbb{E}_{q}\right)$;
(ii) $F=\Psi_{p_{\sigma} /(q r)} \circ \phi \circ \Psi_{r} \circ \sigma$, where $\sigma \in \Sigma_{n}$ is such that $p_{\sigma} / q \in \mathbb{N}^{n}, r \in \mathbb{N}^{n}$ is such that $p_{\sigma} /(q r) \in \mathbb{N}^{n}$, and $\phi \in \operatorname{Aut}\left(\mathbb{E}_{p_{\sigma} / r}\right)$.
In particular, $\operatorname{Prop}\left(\mathbb{E}_{p}\right)=\operatorname{Aut}\left(\mathbb{E}_{p}\right)$.

2. Generalized Hartogs triangles

Let $n, m \in \mathbb{N}$. For $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{>0}^{n}$ and $q=\left(q_{1}, \ldots, q_{m}\right) \in \mathbb{R}_{>0}^{m}$, define the generalized Hartogs triangle

$$
\mathbb{F}_{p, q}:=\left\{\left(z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{m}\right) \in \mathbb{C}^{n+m}: \sum_{j=1}^{n}\left|z_{j}\right|^{2 p_{j}}<\sum_{j=1}^{m}\left|w_{j}\right|^{2 q_{j}}<1\right\}
$$

Note that $\mathbb{F}_{p, q}$ is nonsmooth pseudoconvex Reinhardt domain, not containing the origin. Moreover, if $n=m=1$, then $\mathbb{F}_{1,1}$ is the standard Hartogs triangle.

The problem of characterization of $\operatorname{Prop}\left(\mathbb{F}_{p, q}, \mathbb{F}_{\tilde{p}, \tilde{q}}\right)$ and $\operatorname{Aut}\left(\mathbb{F}_{p, q}\right)$ has been investigated in many papers. The necessary and sufficient conditions for the nonemptiness of $\operatorname{Prop}\left(\mathbb{F}_{p, q}, \mathbb{F}_{\tilde{p}, \tilde{q}}\right)$ are given in [1] for $p, \tilde{p} \in \mathbb{N}^{n}, q, \tilde{q} \in \mathbb{N}^{m}, n, m \geq 2$, in [2] for $p, \tilde{p} \in \mathbb{R}_{>0}^{n}, q, \tilde{q} \in \mathbb{R}_{>0}^{m}, n, m \geq 2$, and in [8] for $p, \tilde{p} \in \mathbb{N}^{n}, q, \tilde{q} \in \mathbb{N}^{m}, m=1$. The explicit form of an $F \in \operatorname{Prop}\left(\mathbb{F}_{p, q}, \mathbb{F}_{\tilde{p}, \tilde{q}}\right)$ is presented in [8] for $p, \tilde{p} \in \mathbb{N}^{n}$, $q, \tilde{q} \in \mathbb{N}^{m}, m=1$, whereas the description of $\operatorname{Aut}\left(\mathbb{F}_{p, q}\right)$ may be found in [3] for $p \in \mathbb{N}^{n}, q \in \mathbb{N}^{m}, n, m \geq 2$, and in [8] for $p \in \mathbb{N}^{n}, q \in \mathbb{N}^{m}, m=1$.

We consider only the case $n=1$.
Our first result is the following
Theorem 3. If $n=m=1$, then for arbitrary $p, q, \tilde{p}, \tilde{q} \in \mathbb{R}_{>0}$ the following conditions are equivalent
(i) $F \in \operatorname{Prop}\left(\mathbb{F}_{p, q}, \mathbb{F}_{\tilde{p}, \tilde{q}}\right)$;
(ii) $F(z, w)=\left\{\begin{array}{ll}\left(\zeta z^{k} w^{l \tilde{q} / \tilde{p}-k q / p}, \xi w^{l}\right), & \text { if } q / p \notin \mathbb{N}, l \tilde{q} / \tilde{p}-k q / p \in \mathbb{Z} \\ \left(\zeta w^{l \tilde{q} / \tilde{p}} B\left(z w^{-q / p}\right), \xi w^{l}\right), & \text { if } q / p \in \mathbb{N}, l \tilde{q} / \tilde{p} \in \mathbb{N}\end{array}\right.$,
where $\zeta, \xi \in \mathbb{T}, k, l \in \mathbb{N}$, and B is a finite Blaschke product.
In particular, $\operatorname{Prop}\left(\mathbb{F}_{p, q}\right) \supsetneq \operatorname{Aut}\left(\mathbb{F}_{p, q}\right)$.
Theorem 3 was proved in [8] for $p, q, \tilde{p}, \tilde{q} \in \mathbb{N}$. Our result gives an affirmative answer to the question posed by the Authors in [6], whether the equivalence (i) \Leftrightarrow (ii) remains true for arbitrary $p, q, \tilde{p}, \tilde{q} \in \mathbb{R}_{>0}$. In this case, however, neither the method from [2] (where the assumption $m \geq 2$ is essential) nor the method from [8] (where the assumption $p, q, \tilde{p}, \tilde{q} \in \mathbb{N}$ is essential) can be used. Fortunately, it turns out that one may get our result by careful study of the proof of the main result from [5],
where full characterization of nonelementary proper holomorphic mappings between bounded Reinhardt domains in \mathbb{C}^{2} is given.

Our next result is the following
Theorem 4. Assume that $n=1, m \geq 2, p, \tilde{p} \in \mathbb{R}_{>0}, q, \tilde{q} \in \mathbb{R}_{>0}^{m}$.
(a) The following conditions are equivalent
(i) $\operatorname{Prop}\left(\mathbb{F}_{p, q}, \mathbb{F}_{\tilde{p}, \tilde{q}}\right) \neq \varnothing$;
(ii) $p / \tilde{p} \in \mathbb{N}$ and there exist $\sigma \in \Sigma_{m}$ such that $q_{\sigma} / \tilde{q} \in \mathbb{N}^{m}$.
(b) The following conditions are equivalent
(i) $F \in \operatorname{Prop}\left(\mathbb{F}_{p, q}, \mathbb{F}_{\tilde{p}, \tilde{q}}\right)$;
(ii) $F(z, w)=\left(\zeta z^{k}, h(w)\right)$, where $(z, w) \in \mathbb{F}_{p, q} \cap\left(\mathbb{C} \times \mathbb{C}^{m}\right), \zeta \in \mathbb{T}, k \in \mathbb{N}$, $h \in \operatorname{Prop}\left(\mathbb{E}_{q}, \mathbb{E}_{\tilde{q}}\right), h(0)=0$.
In particular, $\operatorname{Prop}\left(\mathbb{F}_{p, q}\right)=\operatorname{Aut}\left(\mathbb{F}_{p, q}\right)$.
(c) If $0 \leq \mu \leq m, q \in\{1\}^{\mu} \times\left(\mathbb{R}_{>0} \backslash\{1\}\right)^{m-\mu}$, then
(1)
$\operatorname{Aut}\left(\mathbb{F}_{p, q}\right)=\left\{F_{H, \zeta, \xi, \sigma}: H \in \mathbb{U}(\mu), \zeta \in \mathbb{T}, \xi \in \mathbb{T}^{m-\mu}, \sigma \in \Sigma_{m-\mu}\left(q_{\mu+1}, \ldots, q_{m}\right)\right\}$,
where for $w=\left(w_{1}, \ldots, w_{m}\right), \xi=\left(\xi_{1}, \ldots, \xi_{m-\mu}\right) \in \mathbb{T}^{m-\mu}$ we put

$$
F_{H, \zeta, \xi, \sigma}(z, w):=\left(\zeta z, H\left(w_{1}, \ldots, w_{\mu}\right), \xi_{1} w_{\mu+\sigma(1)} \ldots, \xi_{m-\mu} w_{\mu+\sigma(m-\mu)}\right)
$$

Theorem 4 (a) was proved in [1] (for $n, m \geq 2, p, \tilde{p} \in \mathbb{N}^{n}$, and $q, \tilde{q} \in \mathbb{N}^{m}$) and in [2] (for $n, m \geq 2, p, \tilde{p} \in \mathbb{R}_{>0}^{n}$, and $q, \tilde{q} \in \mathbb{R}_{>0}^{m}$). Theorem 4 (b) was proved in [3] for $n, m \geq 2, p=\tilde{p} \in \mathbb{N}^{n}$, and $q=\tilde{q} \in \mathbb{N}^{m}$. Theorem 4 (c) was proved in [3] for $n, m \geq 2, p \in \mathbb{N}^{n}$, and $q \in \mathbb{N}^{m}$. Part (c) of Theorem 4 gives an affirmative answer to the question posed by the Authors in [6], whether (1) remains true for arbitrary $p \in \mathbb{R}_{>0}^{n}, q \in \mathbb{R}_{>0}^{m}$ (at least in the case $n=1$).

References

[1] Z. H. Chen, D. K. Xu, Proper holomorphic mappings between some nonsmooth domains, Chin. Ann. Math. 2 (2001), 177-182.
[2] Z. H. Chen, Proper holomorphic mappings between some generalized Hartogs triangles, in "Geometric Function Theory in Several Complex Variables, C. H. Fitzgerald, S. Gong (ed.), 74-81 Proceedings of a Satellite Conference to the International Congress on Mathematicians in Beijing 2002, World Scientific Publishing Co. Pte. Ltd., 2004.
[3] Z. H. Chen, D. K. Xu, Rigidity of proper self-mapping on some kinds of generalized Hartogs triangle, Acta Math. Sin. (Engl. Ser.) 18 (2002), 357-362.
[4] G. Dini, A. Selvaggi Primicerio, Proper holomorphic mappings between generalized pseudoellipsoids, Ann. Mat. Pura Appl. 158 (1991), 219-229.
[5] A. V. Isaev, N. G. Kruzhilin, Proper holomorphic maps between Reinhardt domains in \mathbb{C}^{2}, Michigan Math. J. 54 (2006), 34-63.
[6] M. Jarnicki, P. Pflug, First Steps in Several Complex Variables: Reinhardt Domains, European Mathematical Society Publishing House, 2008.
[7] M. Landucci, Proper equivalence for a class of pseudoconvex domains, Trans. Amer. Math. Soc. 282 (1984), 807-811.
[8] M. Landucci, Proper holomorphic mappings between some nonsmooth domains, Ann. Mat. Pura Appl. 155 (1989), 193-203.

