Kołodziej's subsolution theorem for unbounded pseudoconvex domains

Rafał Czyż

Bounded domains in \mathbb{C}^n

Theorem 1. [Kołodziej] Let Ω be a bounded hyperconvex domain in \mathbb{C}^n , and $f \in C(\partial\Omega)$. Let $u \in \mathcal{PSH}(\Omega) \cap L^{\infty}_{loc}(\Omega)$, $\lim_{z \to w} u(z) = f(w)$, for all $w \in \partial\Omega$. If μ is a non-negative and finite measure such that $\mu \leq (dd^c u)^n$, then there exists a uniquely determined bounded plurisubharmonic function v such that $(dd^c v)^n = \mu$ and $\lim_{z \to w} v(z) = f(w)$, for all $w \in \partial\Omega$.

This theorem was generalized by Åhag, Cegrell, Czyż and Phạm to the maximal class of plurisubharmonic function \mathcal{E} , for which the complex Monge-Ampère operator is well defined.

Unbounded domains in \mathbb{C}^n

Theorem 2.[Kołodziej] Given two entire locally bounded, entire plurisubharmonic functions v and w satisfying $w \leq v$, $(dd^c v)^n \leq (dd^c w)^n$ and $\lim_{|z|\to\infty} (v(z)-w(z)) = 0$, one can solve the Monge-Ampère equation $(dd^c u)^n = \mu$ for any measure μ with

$$(dd^c v)^n \le \mu \le (dd^c w)^n \,.$$

Furthermore, the solution u is unique among functions satisfying $w \le u \le v$.

We generalize this theorem to unbounded pseudoconvex domains, and to the following class of plurisubharmonic functions

$$\mathcal{D}(\Omega) := \left\{ u \in \mathcal{PSH}(\Omega) : \text{ for all } B(z_0, r) \Subset \Omega \text{ there exists a constant} \\ C = C(B(z_0, r), u) \text{ such that } u \in \mathcal{E} + C \right\}.$$

As an immediate consequence we get the following subsolution theorem.

Theorem 3. [Åhag, Czyż] Let Ω be a bounded or unbounded pseudoconvex domain, and let $u \in \mathcal{D}(\Omega)$ be such that the smallest maximal plurisubharmonic majorant \tilde{u} of u exists. Then for any non-negative Radon measure μ that satisfies $\mu \leq (dd^c u)^n$ there exists $w \in \mathcal{D}(\Omega)$ such that

$$(dd^c w)^n = \mu$$
 and $u \le w \le \tilde{u}$ on Ω . (0.1)

Furthermore, if μ vanishes on pluripolar sets, then the solution w of (0.1) is uniquely determined.

We end by solving a Monge-Ampère type equation, and proving uniqueness and stability of the solution.

Theorem 4. [Åhag, Czyż] Let Ω be a bounded or unbounded pseudoconvex domain. Let $\varphi \in \mathcal{D}(\Omega)$ be such that the measure $\mu = (dd^c \varphi)^n$ vanishes on pluripolar sets, and assume that the smallest maximal plurisubharmonic majorant $\tilde{\varphi}$ of φ exists. Assume also that $F(x, z) \geq 0$ is a $dx \times d\mu$ - measurable function on $\mathbb{R} \times \Omega$ that is continuous in the x variable. If there exists a bounded function g such that

$$0 \le F(x,z) \le g(z) \,,$$

then there exists a function $u \in \mathcal{D}(\Omega)$ that satisfies

$$(dd^c u)^n = F(u(z), z) \,\mu.$$

Furthermore, if F is a nondecreasing function in the first variable, then the solution u is uniquely determined. Assume that $0 \leq f, f_j \leq 1$ are measurable functions such that $\{f_j \ \mu\}$ converges to $\{f \ \mu\}$ in weak*-topology, as j tends to $+\infty$, and for each j let u_j and u be solutions of

 $(dd^c u_j)^n = F(u_j(z), z) f_j(z) \, \mu, \qquad \text{and} \qquad (dd^c u)^n = F(u(z), z) f(z) \, \mu \, .$

Then we have that $\{u_j\}$ converges in capacity to u, as j tends to $+\infty$.