Some properties of squeezing functions on bounded domains

(based on the paper by F. Deng, Q. Guan, L. Zhang)

Definition 1. Let $D \subset \mathbb{C}^N$ be a bounded domain. The squeezing function of D is the function $s_D : D \to (0, 1]$ given by

 $s_D(x) := \sup\{r > 0 : \exists f \in \mathcal{O}(D, \mathbb{B}_N) : f(x) = 0, \ \mathbb{B}_N(0, r) \subset f(D), \ f \text{ is injective}\}, \ x \in D,$

where $\mathbb{B}_N(a, r)$ denotes the euclidean ball with radius r and center a, and $\mathbb{B}_N = \mathbb{B}_N(0, 1)$.

Lemma 2. Let $D \subset \mathbb{C}^N$ be a bounded domain, $a \in \mathbb{C}^N$, $x \in D$, and let $(f_j)_{j \in \mathbb{N}} \subset \mathcal{O}(D, \mathbb{C}^N)$ be a sequence of injective mappings with $f_j(x) = a$. If f_j are compactly uniformly convergent on Dto some holomorphic map $f : D \to \mathbb{C}^N$, and int $\bigcap_{i \in \mathbb{N}} f_j(D) \neq \emptyset$, then f is injective.

Theorem 3. If $D \subset \mathbb{C}^N$ is a bounded domain, then for every $x \in D$ there exists an extremal map for s_D at x, i.e. an injective holomorphic map $f: D \to \mathbb{B}_N$ s.t. f(x) = 0 and $\mathbb{B}_N(0, s_D(x)) \subset f(D)$.

Observation 4 (Properties of squeezing functions). Let $D, G \subset \mathbb{C}^N$ be bounded domains. Then

- If $\varphi: D \to G$ is biholomorphic, then $s_G \circ \varphi = s_D$.
- If Aut(D) acts transitively, then s_D is constant.
- $s_{\mathbb{B}_N} \equiv 1.$
- s_D is continuous.
- If $s_D(y) = 1$ for some $y \in D$, then D is biholomorphically equivalent to \mathbb{B}_N .
- If $A \subsetneq D$ is an analytic subset, then

$$s_{D\setminus A}(x) \le \tanh\left(\frac{1}{2}\operatorname{dist}_{c_D}(x,A)\right),$$

where dist $_{c_D}$ is the distance from x to A w.r.t. the Carathéodory distance c_D in D.

Proposition 5. Let $D \subset \mathbb{C}^N$ be a bounded domain. If $\inf_{x \in D} s_D(x) > 0$, then (D, c_D) is a complete metric space. In particular, D is pseudoconvex.

Proposition 6. Let $D \subset \mathbb{C}^N$ be a bounded domain, $x \in D$, $Y \in \mathbb{C}^N$. Then

$$s_D(x)\gamma_D(x,Y) \le \kappa_D(x,Y) \le \frac{1}{s_D(x)}\gamma_D(x,Y),$$

where γ_D and κ_D are the Carathéodory-Reiffen and Kobayashi-Royden metrics in D, respectively. **Proposition 7.** Let $D \subset \mathbb{C}$ be a bounded domain. Then

$$\gamma_D(x,1) \ge \frac{s_D(x)}{4 \operatorname{dist}(x,\partial D)}, x \in D.$$

Proposition 8. Let $D \subset \mathbb{C}$ be a bounded finitely connected domain, and let E be a connected component of $\widehat{\mathbb{C}} \setminus E$. Then:

1. If E is not a single point, then

$$\lim_{D \ni x \to E} s_D(x) = 1$$

2. If E is a single point, then

 $\lim_{D\ni x\to E} s_D(x) = 0.$