SEMI-TUBE DOMAINS IN \mathbb{C}^2

TOMASZ WARSZAWSKI

A domain $D \subset \mathbb{C}^2$ is called a *semi-tube* if $D = D_0 + i\mathbb{R} \simeq D_0 \times \mathbb{R}$ for some \mathcal{C}^2 -smooth domain $D_0 \subset \mathbb{R}^3$, which is said to be a *base*.

The following theorems from the paper [1] are proved (see also [2]).

Theorem 1. Let p be a boundary point of D and suppose that the Levi form of D at p is non-negative (resp. positive) on the complex tangent space, independently on the position (i.e. affine isometry) of D_0 in \mathbb{R}^3 . Then D_0 is convex (resp. strongly convex in the analytic sense) at p.

Theorem 2 (Hartogs-Bochner type extension). Let D_0 be a bounded C^{k+1} -smooth (k = 0, 1, 2, ...) base with connected boundary. Then any C^{k+1} -smooth CR-function on ∂D extends to a function of class $\mathcal{O}(D) \cap C^k(\overline{D})$.

Theorem 3. Let the torus T = T(R, r), where R > r > 0, be in a standard position in \mathbb{R}^3 , that is given by a rotation of a circle $(x_1 - R)^2 + x_3^2 = r^2$ about the x_3 -axis. Then a semi-tube $T \times \mathbb{R}$ is

- strongly pseudoconvex iff $R/r > \frac{4}{3}\sqrt{\frac{2}{3}}$;
- pseudoconvex but not strongly pseudoconvex iff $R/r = \frac{4}{3}\sqrt{\frac{2}{3}}$;
- part strongly pseudoconvex and part strongly pseudoconcave iff $R/r < \frac{4}{3}\sqrt{\frac{2}{3}}$.

References

- J. BURGUÉS, R. DWILEWICZ, Geometry of semi-tube domains in C², Adv. Geom. 14 (2012), no. 4, 685–702.
- [2] R. DWILEWICZ, Holomorphic extensions in complex fiber bundles, J. Math. Anal. Appl. 322 (2006), 556–565.