A CHARACTERIZATION OF DOMAINS IN $\mathbb{R}^n(\mathbb{C}^n)$ WITH CONICALLY ACCESSIBLE BOUNDARY

PIOTR LICZBERSKI

It says usually that a domain $\Omega \subset \mathbb{R}^n$ satisfies the "cone condition" if for every $p \in \Omega$ it includes a closed circular cone $K(p, e(p), \alpha, r)$ with the vertex at the point $p \in \mathbb{R}^n$, an axis vector e(p) and some fixed opening $\alpha \pi, \alpha \in (0, 1)$ and height $r \in (0, \infty]$.

The cone condition was used by S. Zaremba in the paper [6] which refers to the Dirichlet problem. Note that in the present year there is the 150 anniversary of birthday of S. Zaremba (1863 - 1942). The cone property and its generalizations are the main tool for solving very important various mathematical problems, for instance see [1].

During the lecture, the author considered domains $\Omega \subset \mathbb{R}^n$ with a property similar to the above cone property. We say that a domain $\Omega \subset \mathbb{R}^n$, including the origin, is α -accessible, $\alpha \in [0,1)$, if for every point $p \in \partial \Omega$ there exists a number r = r(p) > 0 such that the cone $K(p, p, \alpha, r) > 0$ is included in $\mathbb{R}^n \setminus \Omega$ ([4]). A fev geometric properties of α -accessible domains was given , in particular the following: if $\Omega \subset \mathbb{R}^n$ is an α -accessible domain, $\alpha \in (0, 1)$, then for every $p \in \partial \Omega$ and every $\eta \in (0, \alpha)$ there exists a number $r = r(p, \eta) > 0$, such that the bounded cone $K(p, -p, \eta, r)$ is included in Ω .

As an application of the above the author demonstrated a solution of the following problem, originated in [3]: characterize all α -accessible domains in \mathbb{C}^N which are biholomorphic to the Euclidean ball. Such considerations in \mathbb{C}^n are continuation of some investigations in the complex plane \mathbb{C} (see [5], [2]).

References

- Adams R.A., Fournier J., Cone conditions and properties of Sobolev spaces, J. Math. Anal. Appl., 61 (1977), 713-734.
- [2] Brannan D.A., Kirwan W.E., On some classes of bounded univalent functions, J. London Math. Soc. 2 (1969), 431-443.
- [3] Kohr G., Liczberski P., On strongly starlikeness of order alpha in several complex variables, Glasnik Math. 33(53) (1998), 185-198.
- [4] Liczberski P., Starkov V.V., Domains in \mathbb{R}^n with conical accessible boundary, submitted to J. Math. Anal. Appl.
- [5] Stankiewicz J., Quelques problèmes extrémaux dans les classes α-angulairement étoilées, Ann. Univ. Mariae Curie-Skłodowska 20 (1966), 59-75.
- [6] Zaremba S., Sur le principle de Dirichlet, Acta Math. 34 (1911), 293-316.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF ŁÓDŹ, UL. WÓLCZAŃSKA 215, 93-005 ŁÓDŹ, POLAND

E-mail address: piliczb@p.lodz.pl