ON LOCALLY BIHOLOMORPHIC MAPPINGS FROM MULTI-CONNECTED ONTO SIMPLY CONNECTED DOMAINS

PIOTR LICZBERSKI

Ligocka [Lig] studied the problem: which domains $D \subset \mathbb{C}$ can be mapped locally biholomorphically onto \mathbb{C} or Δ . She nedeed such mapping from D onto \mathbb{C} to decide if each open Riemann surface X is a Riemann domain over the whole plane \mathbb{C} . Ligocka generalized a Gunning-Narasimhan result from [GN] and proved that for every domain $D \subset \mathbb{C}$ there exists a locally biholomorphic mapping from D onto \mathbb{C} . Moreover, if D is finitely connected, not biholomorphic to $\mathbb{C} \setminus \{0\}$, then there exists an m-valent, $m \in N$, locally biholomorphic mapping from D onto \mathbb{C} . During the talk the author showed that for a class of domains (with an isolated boundary fragment of type I, II or III), wider than the class of finitely connected domains, there exist a universal bound $m \leq M$ for the m-valence of locally biholomorphic mapping from D onto \mathbb{C} , and M = 3 is the best possible such constant [LS1], [Sta].

The case $f(D) = \Delta$ refers to the following Fornaess-Stout result [FS]: For every paracompact connected n- dimensional complex manifold X there exists a locally biholomorphic mapping from the open unit polydisc Δ^n onto X with the property that every fibre $f^{-1}(x), x \in X$, consists of not more than $(2n + 1)4^n + 2$ points. Ligocka [Lig] replaced the polydisc Δ^n in this result by a Cartesian product $D_1 \times \ldots \times D_n$, of multi-connected domains $D_j, j = 1, \ldots, n$, but at a cost of worse estimation of the valence: $m \leq (24)^n [(2n+1)4^n + 2]$. This result follows from her theorem that each domain $D \subset \mathbb{C}$, whose complement $\overline{\mathbb{C}} \setminus D$ has an isolated component not a singleton, can be mapped onto Δ locally biholomorphically and m-valently, where $m \leq 24$.

During the talk the author showed that for a class of domains with an isolated boundary fragment of the type I or II there exist a universal bound $m \leq M$ for the *m*-valence of locally biholomorphic mapping from D onto Δ , and M = 3 (see [LS2], [Sta]). Hence, also the result: If $X = D_1 \times ... \times D_n$, where domains D_j , j = 1, ..., n, fulfil the assumptions of the previous result, and Y is a connected paracompact *n*-dimensional complex manifold, then there exists a locally biholomorphic and *m*-valent mapping f from domain X onto manifold Y and $m \leq 3^n[(2n+1)4^n+2])$.

References

- [GN] Gunning R.C., Narasimhan R., Immersion of open Riemann surfaces, Math. Ann. 174 (1967), 103-108.
- [FS] Fornaess J.E., Stout E.L., Spreading Polydisc on complex manifolds, Amer. J. Math. 99 (1977), 933-960.
- [LS1] Liczberski P., Starkov V.V., On locally biholomorphic mappings from multi connected onto simply connected domains, Ann. Polon. Math. 85 (2005), 135-143.
- [LS2] Liczberski P., Starkov V.V., On locally biholomorphic finitely valent mappings from multi-connected onto the open disc, J. Math. Anal. Appl., 353 (2009), 85-87.
- [Lig] Ligocka E., On locally biholomorphic surjective mappings, Ann. Polon. Math. 82 (2003), 127-135.
- [Sta] Starkov V.V., On locally biholomorphic mappings of multi-connected domains, Siberian Math. J 5 (2007), 733-739.

PIOTR LICZBERSKI, INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF ŁÓDŹ, UL. WÓLCZAŃSKA 215, 93-005 ŁÓDŹ, POLAND,

E-mail address: piliczb@p.lodz.pl