Complex geodesics in strictly linear convex domains

THEOREM 0.1. Let $D \in \mathbb{C}^{n}$ be a strictly linear convex domain with the boundary of class $\mathcal{C}^{k+1, s}$, where $k \in \mathbb{N}, s \in(0,1)$. Then the mapping

$$
D \times \mathbb{C}^{m} \backslash\{0\} \ni(w, v) \mapsto f_{w, v} \in Y_{m}
$$

where $f_{w, v}$ is a complex geodesic through the point w and in direction v, is of class $\mathcal{C}^{k-1, s}$. (By Y_{m} we denote the subspace of those mappings in $\mathcal{C}^{0, s}\left(\mathbb{T}, \mathbb{C}^{m}\right)$ that admit a holomorphic continuation to \mathbb{D}.)
The proof is to apply the implicit function theorem to the function

$$
\Xi: \mathbb{C}^{m} \times \mathbb{C}^{m} \times Y_{m} \times \mathbb{R} \longrightarrow T \times Y_{m-1}^{\prime} \times \mathbb{C}^{m} \times \mathbb{C}^{m}
$$

given by

$$
\Xi(w, v, f, \lambda):=\left(r \circ f, \pi\left(\frac{\left[H^{t} \tau \circ f\right]}{\left(H^{t} \tau \circ f\right)_{1}}\right), f(0)-w, f^{\prime}(0)-\lambda v\right)
$$

where τ is a vector field that agrees with the derivative of the defining function r_{z} on ∂D, and H is a matrix whose entries are holomorphic functions on the disc, defined to simplify $F^{\prime} \bullet \tilde{F}$. F is a fixed extremal mapping for $W \in D$ and $V \in \mathbb{C}^{n}$ and \tilde{F} is an associated mapping.

The most important is the following
Lemma 0.2 . Let $W: \mathbb{T} \rightarrow \mathcal{M}_{m}^{-1}$ be a map of class $\mathcal{C}^{0, s}$ such that $W(\zeta)$ is self-adjoint and positive definite matrix for every $\zeta \in \mathbb{T}$. Then there exists $H: \mathbb{D} \rightarrow$ \mathcal{M}_{m}^{-1} satisfying $H \in \mathcal{C}^{0, s}(\overline{\mathbb{D}}) \cap \mathcal{O}(\mathbb{D})$ and $H^{*} H=W$ on \mathbb{T}.

The proof of Lemma consists of four steps. First, we show it for $w:=W-I$ with sufficiently small $\mathcal{C}^{0, s}$ norm. Next, using this fact, we prove that for arbitrary $\delta>0$, there exists $m \times m$ matrix valued function $H \in \mathcal{C}^{0, s-\delta}(\overline{\mathbb{D}}) \cap \mathcal{O}(\mathbb{D})$ such that $H^{*} H=W$ on \mathbb{T}. The third step is, that for $W: \mathbb{T} \rightarrow \mathcal{M}_{m}^{-1}$ of class $\mathcal{C}^{0, s}$ and arbitrary point $\omega \in \mathbb{T}$, there exists $\widetilde{W}: \mathbb{T} \rightarrow \mathcal{M}_{m}^{-1}$ such that $\widetilde{W}=W$ near ω and the equation $H^{*} H=\widetilde{W}$ admits a solution $H \in \mathcal{C}^{0, s}(\overline{\mathbb{D}}) \cap \mathcal{O}(\mathbb{D})$. Finally, we prove that $H \in \mathcal{C}^{0, s-\delta}(\overline{\mathbb{D}}) \cap \mathcal{O}(\mathbb{D})$ satysfying $H^{*} H=W$ on \mathbb{T} is actually in $\mathcal{C}^{0, s}(\overline{\mathbb{D}})$.

