DELTA PLURISUBHARMONIC FUNCTIONS

RAFAL CZYŻ

Let $\Omega \subseteq \mathbb{C}^n$, $n \geq 1$, be a bounded hyperconvex domain. We say that a plurisubharmonic function φ defined on Ω belongs to \mathcal{E}_0 if $\lim_{z\to\xi}\varphi(z)=0$, for every $\xi\in\partial\Omega$, and $\int_{\Omega} (dd^c\varphi)^n < +\infty$. Let us define for p>0

$$\mathcal{E}_p = \{ u \in \mathcal{PSH}(\Omega) : \exists u_j \in \mathcal{E}_0; u_j \searrow u, \sup_j e_p(u_j) < \infty \},\$$

where $e_p(u) = \int_{\Omega} (-u)^p (dd^c u)^n$. Along with \mathcal{E}_p we are also interested in the following set of measures

 $\mathcal{M}_p = \left\{ \mu : \mu \text{ is a positive Radon measure on } \Omega \text{ such that} \\ \left(dd^c u \right)^n = \mu \text{ for some } u \in \mathcal{E}_p \right\}.$

Theorem 0.1. (1) The ordered vector space $(\delta \mathcal{E}_p, \geq)$ is a Riesz space with the supremum, and infimum defined as

 $\sup(u, v) = \sup(u_1 - u_2, v_1 - v_2) = \max(u_1 + v_2, u_2 + v_1) - (u_2 + v_2) \text{ and}$ $\inf(u, v) = -\sup(-u, -v),$

- (2) The ordered vector space $(\delta \mathcal{E}_p, \succeq)$ is not Riesz space for n > 1, where \succeq is the order generated by the cone \mathcal{E}_p (i.e. $u \succeq v$ if and only if $u v \in \mathcal{E}_p$).
- (3) The ordered vector spece (δM_p, ≽) is a Riesz space, where ≽ is the order generated by the cone M_p and supremum and infimum of two positive measures μ, ν are defined by

$$\sup(\mu,\nu)(A) = \sup\{\mu(B) + \nu(A \setminus B) : B \subset A\},$$

$$\inf(\mu,\nu)(A) = \inf\{\mu(B) + \nu(A \setminus B) : B \subset A\}.$$

Let p > 0. Then for $u \in \delta \mathcal{E}_p$ we define:

$$||u||_p = \inf_{\substack{u_1 - u_2 = u \\ u_1, u_2 \in \mathcal{E}_p}} \left(\int_{\Omega} (-(u_1 + u_2))^p (dd^c (u_1 + u_2))^n \right)^{\frac{1}{n+p}},$$

and let $|\cdot|_p$ be defined on $\delta \mathcal{M}_p$ by

$$|\mu|_{p} = \inf_{\substack{\mu_{1}-\mu_{2}=\mu\\ \mu_{1},\mu_{2}\in\mathcal{M}_{p}}} \|u_{\mu_{1}}\|_{p}^{n} + \|u_{\mu_{2}}\|_{p}^{n},$$

where $u_{\mu_j} \in \mathcal{E}_p$, j = 1, 2, are the uniquely determined solutions to the equations $\left(dd^c u_{\mu_j}\right)^n = \mu_j$.

Theorem 0.2. Let p > 0.

- a) $(\delta \mathcal{E}_p, \|\cdot\|_p)$ is a quasi-Banach space for $p \neq 1$, and $(\delta \mathcal{E}_1, \|\cdot\|_1)$ is a Banach spaces.
- b) $(\delta \mathcal{M}_p, |\cdot|_p)$ is a quasi-Banach space for $p \neq 1$, and $(\delta \mathcal{M}_1, |\cdot|_1)$ is a Banach space.

The set of all regular linear functional defined on (X, \succeq) , is denoted by X^r , and the set of ordered bounded linear functional is denoted by X^b . These vector subspaces satisfy $X^r \subseteq X^b \subseteq X^*$.

The topological dual of a topological vector space (X, τ) is denoted by X', i.e. X' is the vector subspace of X^* consisting of all τ -continuous functionals. Let \mathcal{K} be any cone in (X, τ) , then we define the dual cone \mathcal{K}' of \mathcal{K} in (X, τ) by

$$\mathcal{K}' = \{ f \in X^* : f(x) \ge 0, \text{ for each } x \in \mathcal{K} \}.$$

Let Ω be bounded hyperconvex domain in \mathbb{C}^n . For each non-pluripolar set $\omega \subseteq \Omega$ we define

$$D_{\omega}: \mathcal{E}_p \ni u \to \int_{\omega} \Delta u \in \mathbb{R}.$$

Then D_{ω} is a positive, and linear, functional defined on \mathcal{E}_p . Hence, it can be extended to a regular, linear functional, defined on $(\delta \mathcal{E}_p, \geq , \|\cdot\|_p)$. Let \mathcal{D} denote the family the functionals D_{ω} together with the zero functional, i.e.

$$\mathcal{D} = \{0\} \cup \{D_{\omega} : \omega \Subset \Omega\}.$$

Theorem 0.3. Let p > 0. Then

- (1) \mathcal{E}_p is a normal cone in $(\delta \mathcal{E}_p, \geq, \|\cdot\|_p)$,
- (2) $(\delta \mathcal{E}_p, \succcurlyeq, \|\cdot\|_p)^r = (\delta \mathcal{E}_p, \succcurlyeq, \|\cdot\|_p)^b = (\delta \mathcal{E}_p, \succcurlyeq, \|\cdot\|_p)', i.e.$ $(\delta \mathcal{E}_p, \succcurlyeq, \|\cdot\|_p)' = \mathcal{E}'_p - \mathcal{E}'_p.$
- (3) The vector space $(\delta \mathcal{E}_p, \geq , \|\cdot\|_p)'$, $p \geq 1$, is equal to the closure of $\delta \mathcal{M}_p$ in $\sigma((\delta \mathcal{E}_p)', \delta \mathcal{E}_p)$.
- (4) The vector space $(\delta \mathcal{E}_p, \succeq, \|\cdot\|_p)'$ is equal to the $\sigma((\delta \mathcal{E}_p)', \delta \mathcal{E}_p)$ -closure of the linear span of \mathcal{D} , where

The correspondent statements for parts (1)-(3) are also true for $(\delta \mathcal{M}_p, \succeq, \|\cdot\|_p)$.

We are interested in extension of the complex Monge-Ampère operator to the class of delta plurisubharmonic functions. One direction could be to follow Cegrell and Wiklund idea and define for $u \in \delta \mathcal{E}$

$$MA_1(u) = MA_1(u_1 - u_2) = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} (dd^c u_1)^k \wedge (dd^c u_2)^{n-k}$$

One the other hand we can also define for $u = u_1 - u_2 \in \delta \mathcal{E}$ we can define

$$u^- = (\sup\{\beta \in \mathcal{E} : \text{ there exists } \alpha \in \mathcal{E} \text{ such that } u_1 + \beta = u_2 + \alpha\})^*$$

and

$$u^+ = (\sup\{\alpha \in \mathcal{E} : \text{ there exists } \beta \in \mathcal{E} \text{ such that } u_1 + \beta = u_2 + \alpha\})^*.$$

It can be proved that $u = u^+ - u^-$.

Now we can extend the complex Monge-Ampère by the formula

$$MA_2(u) = MA_2(u^+ - u^-) = (dd^c u^+)^n - (dd^c u^-)^n.$$

The Dirichlet problem (existence and uniqueness of a solution) for operators MA_1 and MA_2 is an open problem. Some partial result are obtained in the case of radially symmetric plurisubharmonic functions.