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In the following, Ω denotes the bounded domain in RN or Cn. Moreover,
when we consider the Poisson kernel and Szegö kernel, we also assume, that Ω
has C2 boundary.

Let F : RN \ {0} → R be a fundamental solution for the Laplacian in RN

i.e. let ∆F = δ0, where δ0 denotes the Dirac distribution; in other words the
equality

∫
RN (∆φ)F dV = φ(0) holds for every test function φ ∈ C∞c (RN). The

explicit form of F is well known, namely F = (2π)−1 log ||x|| for N = 2 and
F = (2−N)−1ω−1

N−1||x||2−N for N 6= 2, where ωN−1 denotes the area of the unit
sphere in RN . Now let us define Γ: RN×RN \{diag} → R as Γ(x, y) := F (x−y).

Def. Let Ω ⊂ RN be a bounded domain with C2 boundary. If a function
G : Ω× Ω \ {diag} → R satisfies the following conditions:

• G is of class C2 on Ω× Ω \ {diag}
• G is of class C2−ε on Ω× Ω \ {diag} for every small, positive ε
• G(x, ·) is harmonic on Ω \ {x} for every x ∈ Ω
• G(x, ·)− Γ(x, ·) extends to a harmonic function on Ω for every x ∈ Ω
• G(x, ·) vanishes on the boundary of Ω

then G is called a Green’s function of the domain Ω.
Thm. [6, ch. 1] G is symmetric on Ω×Ω, uniquely determined by the above

conditions and exists in the case of a C2 class of a boundary of Ω.
Let n denotes the unit, normal, outward-pointing vector field on the boundary

of Ω and define P : Ω× ∂Ω → R, the Poisson kernel of Ω [6, ch. 1], as follows:

P(x, y) := ∇−nyG(x, ·) for (x, y) ∈ Ω× ∂Ω,

where ny denotes the value of n at y.
Thm. [4, ch. 1] P is strictly positive, P(·, y) is harmonic and the following

Poisson integral formula holds for every complex function u, harmonic on Ω
and continuous on Ω:

u(x) =
∫

∂Ω

P(x, y)u(y)dσ(y),

where dσ is a standard area measure [4, App. II] on the boundary ∂Ω.
Now let Ω be a bounded domain in RN , with C2 boundary and let φ : R →

[0, 1] be a cut-of function, supported in [−2, 2], with φ ≡ 1 on −1, 1. Moreover,
let δΩ(x) ≡ dist(x, ∂Ω). It is possible to show [4, ch. 8], that for every sufficiently
small, positive ε0, the function

λ(x) =
{
−[φ(|x|/ε0)δΩ(|x|) + (1− φ(|x|/ε0))] for x ∈ Ω,

φ(|x|/ε0)δΩ(|x|) + (1− φ(|x|/ε0)) for x ∈ RN \ Ω
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is a C2 defining function [3, ch. 1] for Ω. Moreover, if 0 < ε < ε0, then ∂Ωε ≡
{x ∈ Ω : λ(x) = −ε} is a C2 regular submanifold in RN that bounds Ωε ≡ {x ∈
Ω : λ(x) < −ε}. In the following, we shall write dσ instead of dσε (the area
measure on ∂Ωε.) Now let us define the space h2(Ω) in the following way:

h2(Ω) := {f complex-valued, harmonic on Ω : sup
0<ε<ε0

[ ∫
∂Ωε

|f(x)|2dσ(x)
] 1

2
< ∞}

This definition is in fact independent of the particular choice of the defining
function, for which the boundaries of the approximating domains Ωε are C2

smooth (Lemma of E. Stein, [4, ch. 8])
Thm. [4, ch. 8] Let Ω be a bounded domain in RN , with C2 boundary and

let f be a complex-valued, harmonic function on Ω. The following conditions
are equivalent :
1. f ∈ h2(Ω)
2. there exists a complex-valued function f̃ ∈ L2(∂Ω, dσ), such that

f(x) =
∫

∂Ω

P(x, y)f̃(y)dσ(y) for x ∈ Ω

3. |f |2 has a harmonic majorant.
Moreover, if the above conditions are satisfied, then f̃ is equal almost everywhere
on the boundary ∂Ω to the boundary values of f i.e.

lim
ε→0+

f(y − εny) = f̃(y) for almost all y ∈ ∂Ω

In the following we shall denote the boundary values by a tilde.

Now, assume that Ω is a bounded domain in Cn and define the Bergman
spaces and Hardy spaces (in the following, for the purpose of integration, we
identify Cn with R2n):

A2(Ω) := {f ∈ O(Ω) :
[ ∫

Ω

|f(z)|2dV (z)
] 1

2
= ||f ||A2(Ω) < ∞}

H2(Ω) := {f ∈ O(Ω) : sup
ε>0

[ ∫
∂Ωε

|f(z)|2dσ(z)
] 1

2
= ||f ||H2(Ω) < ∞}

Thm. [4, ch. 8] Let f ∈ H2(Ω) and let f̃ denotes its boundary values. Then

||f ||H2(Ω) = sup
ε>0

[ ∫
∂Ωε

|f(z)|2dσ(z)
] 1

2
=

[ ∫
∂Ω

|f̃(z)|2dσ(z)
] 1

2
= ||f̃ ||L2(∂Ω)

Now let us define the scalar product in A2(Ω) and H2(Ω)

< f, g >A2(Ω):=
∫

Ω

f(z)g(z)dV (z), < f, g >H2(Ω):=
∫

∂Ω

f̃(z)g̃(z)dσ(z)
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Thm. [4,5] A2(Ω) and H2(Ω) are separable Hilbert spaces.
Now let z ∈ Ω and let us consider the evaluation functional f → Ez(f) :=

f(z) on each of these spaces.
Thm. [4,5] For every z ∈ Ω Ez is continuous, linear functional on each of

the spaces A2(Ω),H2(Ω)
The Riesz representation theorem implies, that for every z ∈ Ω there exists

exactly one bz ∈ A2(Ω), such that for all f ∈ A2(Ω) we have

f(z) = Ez(f) =< f, bz >=
∫

Ω

f(w)bz(w)dV (w) =
∫

Ω

B(z, w)f(w)dV (w),

where B : Ω× Ω → C is defined by B(z, w) = bz(w).
Similarly for every z ∈ Ω there exists exactly one sz ∈ H2(Ω), such that for

all f ∈ H2(Ω) we have

f(z) = Ez(f) =< f, sz >=
∫

∂Ω

f̃(w)s̃z(w)dσ(w) =
∫

∂Ω

S̃(z, w)f̃(w)dσ(w),

where S̃ : Ω× ∂Ω → C is defined by S̃(z, w) = s̃z(w).
Moreover, let us define the function S : Ω×Ω → C, as S(z, w) = sz(w). The

function B is called the Bergman kernel for Ω and the function S is called
the Szegö kernel for Ω.

Thm. [4,5] Let (φj)∞j=1 be an orthonormal basis in A2(Ω) (respectively H2(Ω)).
Then we have the equality

∞∑
j=1

φj(z)φj(w) = B(z, w) (resp. = S(z, w)),

where the series on the LHS converges compactly on Ω× Ω.
Thm. [4,5] The Bergman kernel and Szegö kernel are strictly positive on the

diagonal and they are conjugate symmetric. Moreover, the Bergman kernel is
an element of A2(Ω), with respect to the first variable and the analogous result
holds for the Szegö kernel.

The Bergman kernel and Szegö kernel can almost never be explicitly computed.
However, they can be calculated asymptotically in a number of instances [5].
The explicit formulas for these kernels [4,5], in the case of the unit ball in Cn,
are as follows:

B(z, w) =
n!
πn

1
(1− < z,w >)n+1

, S(z, w) =
(n− 1)!

2πn

1
(1− < z,w >)n

,

where <,> denotes the standard scalar product on Cn.
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Thm. (Ramadanov) [5] Let (Ωj)∞j=1 be an increasing sequence of bounded
domains in Cn and let Ω = ∪∞j=1Ωj be also bounded. Then

BΩ(z, w) = lim
j→∞

BΩj
(z, w),

and the convergence is even uniform on compact subsets of Ω× Ω.
Def. [3, App. A.1] Fix an integer k ≥ 1. Consider the collection Dk of all

bounded domains in RN , with Ck boundary. Fix one such domain Ω0. Associate
to it the embedding ι0 into RN , given by ι0(x) = x. In other words, ι0 is a
canonical inclusion. Now let ε > 0. Set

Uε := {Ω ∈ Dk : there exists a surjective embedding

ι of Ω0 to Ω such that ||ι− ι0||Ck < ε}.

Then the sets Uε form a sub-basis for a topology on Dk. This is called the Ck

topology on domains.
Thm. (Krantz) [5] Let (Ωj)∞j=1 be a sequence of bounded domains in Cn that

converges to a limit domain Ω in the topology of domains. Then for every point
(z, w) ∈ Ω× Ω there exists j0 such that for all j ≥ j0 there is (z, w) ∈ Ωj × Ωj

and

BΩ(z, w) = lim
j→∞

BΩj (z, w).

The analogous result (we consider C2 topology of domains) is also true for
the Szegö kernel [5].

Now let us define the Poisson-Szegö kernel and Poisson-Bergman kernel
(also called the Berezin kernel). The construction of the Poisson-Szegö kernel
is due to Hua [2]. He observed, that the Szegö kernel can be converted to
get a kernel which also reproduces H2, but which is positive (not only on the
diagonal). Hua defined the Poisson-Szegö kernel as follows: S : Ω×∂Ω → (0,+∞)
and

S(z, w) :=
|S̃(z, w)|2

S(z, z)
.

Now it is not difficult to prove the following theorem [5].
Thm. For f ∈ O(Ω) ∩ C(Ω), the equality

f(z) =
∫

∂Ω

S(z, w)f(w)dσ(w)

holds for all z ∈ Ω.
Moreover, it is true [5], that this equality holds even for functions f ∈ H2(Ω),
if we assume that Ω is strictly pseudoconvex.

It is known [5,6], that in the case n = 1 we have P = S for a simply connected
domain, but this equality does not hold for n > 1.
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Hua did not consider his construction for the Bergman kernel, but is is just
as valid in this context. This ideas were developed by Berezin in the context of
quantization on the Kähler manifolds [1]. If we define

B(z, w) :=
|B(z, w)|2

B(z, z)
,

then we have the following result.
Thm. For f ∈ O(Ω) ∩ C(Ω), the equality

f(z) =
∫

Ω

B(z, w)f(w)dV (w)

holds for all z ∈ Ω.
Moreover, it is true [5], that this equality holds even for functions f ∈ A2(Ω), if
we assume that Ω is pseudoconvex domain with C∞ boundary.
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