
ON CARATHÉODORY COMPLETENESS
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Our talk consists of two parts.

1. On non-compact versions of Edwards’ theorem

Let X be a topological space and let C(X) be the set of all continuous functions on X. A
convex cone S ⊂ C(X) is a subset such that αf + βg ∈ S for any f, g ∈ S and any α, β ≥ 0.
In future we assume that any convex cone contains also constant functions on X. We each
convex cone S and a point x ∈ X we associate two sets:

(1) JSx (X) - the set of all Jensen measures with barycenter at x which consists of Borel
probability measures µ with compact support such that ψ(x) ≤

∫
ψdµ for any ψ ∈ X;

(2) RSx (X) - the set of all representing measures with barycenter at x which consists of
Borel probability measures µ with compact support such that ψ(x) =

∫
ψdµ for any

ψ ∈ X;
Note that RSx (X) ⊂ JSx (X).
For any function ϕ ∈ C(X) we consider its S-envelope as

ESϕ(x) = sup{ψ(x) : ψ ∈ S, ψ ≤ ϕ}.

In 1965 Edwards proved the following result:

Theorem 1. Let X be a compact topological space and let ϕ be a lower semicontinuous
function on X. Then

ESϕ(x) = min
{∫

ϕdµ : µ ∈ JSx (X)
}
.

In 2013 Gogus, Perkins, and Poletsky proved the following non-compact version of Edwards’
theorem

Theorem 2. Let X be a locally compact σ-compact Hausdorff space and let ϕ be a continuous
function on X. Then ESϕ ≡ −∞ or

ESϕ(x) = min
{∫

ϕdµ : µ ∈ JSx (X)
}
.

We say that a topological space X is of GPP-type1 if for any positive linear functional
L : C(X)→ R there exists a compact subset K ⊂ X such that L(ϕ) = 0 whenever ϕ ∈ C(X)
and ϕ|K ≡ 0.

Our main results in this part are the following
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Theorem 3. Let X be a normal topological space of GPP-type and let ϕ be a continuous
function on X. Then ESϕ ≡ −∞ or

ESϕ(x) = min
{∫

ϕdµ : µ ∈ JSx (X)
}
.

Theorem 4. Let D ⊂ Cn be a domain and let ζ ∈ ∂D. Then X = D ∪ {ζ} is of GPP-type.

Remark 5. Actually with similar method one can show that for any domain D ⊂ Rn and any
compact set K ⊂ ∂D the set X = D ∪K is of GPP-type. However, we do not need this in
the futur, therefore we prove just the special case.

Proof of Theorem 3. Fix x ∈ X. Then we have a functional

ES(X) : C(X) 3 ϕ 7→ ESϕ(X) ∈ [−∞,+∞).

Note that ES(X) is a positive and superlinear functional and, therefore, (see e.g. Gogus,Perkins
and Poletsky)

ESϕ(X) = min{L(ϕ) : L : C(X)→ R linear, L ≥ ES(X)}.

Since X is of GPP-type for any L : C(X) → R positive linear2 there exists a compact set
K ⊂ X such that L(ϕ) = 0 whenever ϕ = 0 on K. From the Riesz represenation theorem
there exists a Borel probability measure µ with support in K such that L(ϕ) =

∫
ϕdµ. �

Proof of Theorem 4. Take a sequence Rj , rj such that Rj > rj > Rj+1 and Rj → 0 (e.g.,
Rj = 1

3j
and rj = 2

3j+1 ). Consider functions χj ∈ C∞(R) such that 0 ≤ χj ≤ 1 having the
following properties:

χ1(t) =

{
1 t ≥ R1

0 t ≤ r1

and for any k ≥ 2

χk(t) =

{
1−

∑k−1
j=1 χj(t) t ≥ Rk

0 t ≤ rk
.

Note that
∑∞

k=1 χk(t) = 1 for t > 0. Moreover, χk(t) = 0 for t ≥ Rk−1 and t ≤ rk.
Put A1 = X \ B(ζ, r1) and Ak = B(ζ,Rk−1) \ B(ζ, rk), k ≥ 2. Note that Ak, k ≥ 2 are

compact sets and that χk(‖x‖) = 0 for x ∈ Cn \Ak.
Fix k ≥ 2. For any m ≥ 1 we consider compact sets

Kkm = {z ∈ Ak ∩X : dist(z, ∂D) ≥ 1
m
}.

Note that ∪∞m=1Kkm = Ak ∩D. We claim that there exists an m = m(k) such that L(ϕ) = 0
whenever ϕ ∈ C(X), ϕ ≥ 0, and ϕ = 0 on (X \Ak)∪Kkm. Indeed, assume that for any m ≥ 1
there exists a ϕm ∈ C(X), ϕm ≥ 0, ϕ = 0 on (X \ Ak) ∪Kkm, and L(ϕm) = 1. Consider a
function ϕ =

∑∞
m=1 ϕm. Then ϕ ∈ C(X) and L(ϕ) = +∞. A contradiction.

Similarly, we show that there exists an m = m(1) such that L(ϕ) = 0 whenever ϕ ∈ C(X),
ϕ ≥ 0, and ϕ = 0 on (X \A1)∪K1m. Using the linearity of L, we can get rid of the condition
ϕ ≥ 0.

Put K =
(
∪∞k=1Kkm(k)

)
∪{ζ}. Note that K ⊂ X is a compact set. We want to show that

L(ϕ) = 0 whenever ϕ ∈ C(X), ϕ ≥ 0, and ϕ = 0 on K. Fix ϕ ∈ C(X) such that ϕ ≥ 0 and

2Positivity follows from the inequality L ≥ ES(X).
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ϕ = 0 on K. Fix ε > 0. Since ϕ(ζ) = 0, there exists a neighborhood U of ζ such that ϕ < ε

on U . Take k0 sufficiently big such that B(ζ) ∩X ⊂ U . Put χ̃(t) = 1−
∑k0

k=1 χk(t). Then

ϕ(x) =
k0∑
k=1

χk(‖x‖)ϕ(x) + χ̃(‖x‖)ϕ(x).

Hence, L(ϕ) = L(χ̃ϕ) ≤ εL(1). Since ε > 0 was arbitrary we get L(ϕ) = 0. �

Corollary 6. Let D ⊂ Cn be a domain and let ζ ∈ ∂D. We put X = D ∪ {ζ} and S =
H∞(D) ∩ C(X). Then for any ϕ ∈ C(X) we have ESϕ(ζ) = min{

∫
ϕdµ : µ ∈ RSζ (X)}.

Moreover, if RSζ (X) = {δζ} then ESϕ(ζ) = ϕ(ζ).

2. On Carathéodory completeness

Before we state main results of this section, let us recall some notions and results from
one-dimensional analysis.

Let M denotes the set of all positive probability measure in C with compact support and
let µ ∈ M. We define its Newton potential as M(ξ) =

∫
1

|w−ξ|dµ(w). The following result is
a corollary of Fubini’s theorem

Lemma 7. For any ζ ∈ C we have

lim
r→0

1
πr2

∫
D(ζ,r)

|w − ζ| ·M(w)dL(w) = µ({ζ}).

As a Corollary we get

Corollary 8. Assume that µ({ζ}) = 0. Then for any ε > 0 the set

Π(ε) = {w ∈ C : |w − ζ| ·M(w) > ε}
has the property

lim
r→0

L(Π(ε) ∩ D(ζ, r))
πr2

= 0.

For a set X ⊂ Cn we put A(X) = H∞(intX) ∩ C(X).
The main result of this section is the following.

Theorem 9. Let D ⊂ Cn be a domain. Consider the following conditions:
(1) for any ζ ∈ ∂D there exist no a Borel probability measure µ with compact support in

D ∪ {ζ} such that µ 6= δζ and

|f(ζ)| ≤
∫
D∪{ζ}

|f(w)|dµ(w) for any f ∈ A(D ∪ {ζ}).

(2) for any ζ ∈ ∂D there exist no a Borel probability measure µ with compact support in
D ∪ {ζ} such that µ 6= δζ and

f(ζ) =
∫
D∪{ζ}

f(w)dµ(w) for any f ∈ A(D ∪ {ζ}).

(3) for any ζ ∈ ∂D there exists an f ∈ A(D ∪ {ζ}) such that f(ζ) = 1 and |f | < 1 on D.
(4) D is c-finitely compact.
(5) D is c-complete.
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Then (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5). Moreover, if n = 1 then (5) =⇒ (1) and,
therefore, all the above conditions are equivalent.

Proof of Theorem 9. Note that the implications (1) =⇒ (2) and (3) =⇒ (4) =⇒ (5) are
immediate.

So, we have to prove that (2) =⇒ (3). Actually it follows from Corollary 6 and Bishop’s
1/3-2/3 technique of construction of a peak function.

Assume that n = 1. Let us prove (5) =⇒ (1). Assume that there exists a positive
probability measure µ such that µ(D) = 1 and

|f(ζ)| ≤
∫
D
|f |dµ for any f ∈ A(D ∪ {ζ}).

Fix f ∈ A(D ∪ {ζ}). Then there exists a sequence fn ∈ H∞(D) such that ‖fn‖D ≤ 17‖f‖D,
fn extends to be analytic in a neighborhood of ζ and fn converges uniformly to f on any set
of type D \ D(ζ, ε), where ε > 0.

For any η ∈ D we put

gn(z) =
fn(z)− fn(η)

z − η
.

Note that gn ∈ H∞(D ∪ {ζ}). Then

|gn(ζ)| ≤
∫
D
|gn(w)|dµ(w) ≤ 2‖fn‖∞M(η) ≤ 34‖f‖∞M(η)

and, therefore,

|fn(ζ)− fn(η)| ≤ |ζ − η| · 2‖fn‖∞M(η) ≤ |ζ − η| · 34‖f‖∞M(η).

For any η1, η2 ∈ D we have

|f(η1)− f(η2)| ≤ 34‖f‖∞ ·
(
|ζ − η1| ·M(η1) + |ζ − η2| ·M(η2)

)
.

Take a sequence {ην} such that ην → ζ and |ζ − ην | ·M(ην) ≤ 1
2ν . Then {ην} is a c-Cauchy

sequence. A contradiction. �

Corollary 10. Let D ⊂ Cn be a domain. Assume that for any ζ ∈ ∂D there does not exist
a Borel probability measure µ with compact support in D ∪ {ζ} such that µ(D) = 1 and

|f(ζ)| ≤
∫
D
|f(w)|dµ(w) for any f ∈ A(D ∪ {ζ}).

Then D is c-finitely compact.
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