Definition 1. Let $D \subset \mathbb{C}^{n}$ be nonpseudoconvex domain. We put
$E_{D}:=\left\{z \in \mathbb{C}^{n}: P \cap D\right.$ is pseudoconvex for every 2-plane P such that $\left.z \in P\right\}$.
Theorem 1. Let $D \subset \mathbb{C}^{n}, n \geq 3$, be a nonpseudoconvex domain. Then the set E_{D} is contained in an affine complex subspace of codimension two.

Assume that E contains n points $p_{0}, \ldots, p_{n-1} \subset H=\left\{z_{n}=0\right\}$ and $p_{0}, . ., p_{n-1}$ are independent.
Lemma 1. The set $D_{1}:=D \backslash H$ is a psedoconvex domain.
Lemma 2. The set $D_{2}:=D_{1} \cup\left\{z \in H: U \backslash H \subset D_{1}\right.$ for some neighborhood of $\left.z\right\}$ is a psedoconvex domain.
Lemma 3. The region \hat{D} is a union of connected components of \hat{D}_{2}, where $\hat{D}:=$ $D \cap H$ and $\hat{D}_{2}:=D_{2} \cap H$.

