```
Alexander Dyachenko (TU-Berlin)
    dyachenk@math.tu-berlin.de
```


Zeros of univariate functions of special form ${ }^{1}$

During this talk we are going to consider the zeros of univariate entire functions of the form $f\left(z^{k}\right)+z^{p} g\left(z^{k}\right)$ and $g\left(z^{k}\right)+z^{p} f\left(z^{k}\right)$, where $f(z)$ and $g(-z)$ have genus 0 and only negative zero points. It will be shown that the zeros are simple (or at most double in a special case) and distributed "uniformly" among $2 k$ sectors of the complex plane. The approach rests on a connection to the Pick class of functions mapping the upper half of the complex plane into itself (also known as \mathcal{R} - or Nevanlinna functions).

As an application, we will deduce that functions of the form

$$
\sum_{n=0}^{\infty}(\pm i)^{\frac{n(n-1)}{2}} a_{n} z^{n}, \quad \text { where } \quad a_{n} \geq 0
$$

under a certain condition on the coefficients have simple zeros distinct in absolute value. This includes the "Disturbed Exponential" function corresponding to

$$
a_{n}=\frac{1}{n!} \cdot q^{\frac{n(n-1)}{2}} \quad \text { when } \quad 0<q \leq 1,
$$

as well as the Partial Theta function corresponding to

$$
a_{n}=q^{\frac{n(n-1)}{2}} \quad \text { when } \quad 0<q \leq q_{*} \approx 0.7457224107
$$

both appear in problems of statistics and combinatorics (see e.g. the papers by Alan Sokal: "Some wonderful conjectures..." of 2009 and "The leading root of the partial theta function" of 2012).

[^0]
[^0]: ${ }^{1}$ This work was financially supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 259173.

