Let X be a topological Hausdorff space. We define an equivalence relation on X^k by $(x_1, \ldots, x_k) \sim (y_1, \ldots, y_k) :\iff (y_1, \ldots, y_k)$ is a reordering of (x_1, \ldots, x_k) . Then we define the k-th symmetric product of $X: X^k := X^k / \sim$. In the case k = 1, we get $X^1 = X$. Now, we define the projection $\pi : X^k \longrightarrow X^k$, $\pi(x) := [x]$. We put $[x_1, \ldots, x_k] := [(x_1, \ldots, x_k)], \{[x_1, \ldots, x_k]\} := \{x_1, \ldots, x_k\}$. If $x_j \neq x_t$ for $j \neq t$, then we define $[[x_1, \ldots, x_k]] := [x_1, \ldots, x_k]$. Moreover, we put

$$[x_1:\mu_1,\ldots,x_\ell:\mu_\ell] := [\overbrace{x_1,\ldots,x_1}^{\mu_1\text{-times}},\ldots,\overbrace{x_\ell,\ldots,x_\ell}^{\mu_\ell\text{-times}}]$$

provided that $x_j \neq x_t$ for $j \neq t, \mu_1, \ldots, \mu_\ell \in \mathbb{N}, \mu_1 + \cdots + \mu_\ell = k$. We define

$$[A_1, \dots, A_k] := \Big\{ [x_1, \dots, x_k] : x_i \in A_i, \quad i = 1, \dots, k \Big\},\$$

The topology on X^k is defined by the basis

 $[U_1, \ldots, U_m], \quad U_i \text{ is open in } X, \quad i = 1, \ldots, k.$

Observe that π is continuous, open, and \overleftarrow{X}^k is Hausdorff.

Definition 0.1. Let Y be Hausdorff topological space and let $F: X \longrightarrow \overleftarrow{Y^n}$ be continuous. Then we put

$$X_F^{(k)} := \{ x \in X : \#\{F(x)\} = k \},\$$
$$\chi_F := \max\{ k : X_F^{(k)} \neq \emptyset \}, \quad X_F := X_F^{(\chi_F)}.$$

Note that X_F is open.

Proposition 0.2. Let F be as above. Suppose that

$$a \in X_F$$
, $F(a) = [b_1: \mu_1, \dots, b_k: \mu_k]$, $k := \chi_F$.

Then there is a neighborhood $U \subset X_F$ of a and there are uniquely defined continuous functions $f_i : U \longrightarrow Y$, i = 1, ..., k, such that

$$F(x) = [f_1(x): \mu_1, \dots, f_k(x): \mu_k], \quad x \in U$$

In the above situation, we will write $F = \mu_1 f_1 \oplus \cdots \oplus \mu_k f_k$ on U.

Proposition 0.3. Let $F : X^k \longrightarrow Y$. Then there exists a continuous function $\overleftrightarrow{F} : \overleftrightarrow{X^k} \longrightarrow Y$ such that $F = \overleftarrow{F} \circ \pi$ if and only if F is symmetric.

Definition 0.4. Let M, N be complex manifolds and let M be connected. We say a continuous function $F: M \longrightarrow \overrightarrow{N^n}$ is holomorphic on M ($F \in \mathcal{O}(M, \overrightarrow{N^n})$), if:

- $M \setminus M_F$ is thin, i.e. every point $x_0 \in M \setminus M_F$ has open connected neighborhood $V \subset M$ and a function $\varphi \in \mathcal{O}(V), \ \varphi \neq 0$, such that $(M \setminus M_F) \cap V \subset \varphi^{-1}(0),$
- for every $a \in M_F$, if $F = \mu_1 f_1 \oplus \cdots \oplus \mu_k f_k$ on V as in Proposition 0.2, then $f_1, \ldots, f_k \in \mathcal{O}(V)$.

If M is disconnected, then we say that F is holomorphic on M, if $F|_C \in \mathcal{O}(C, \widetilde{N^n})$ for any connected component $C \subset M$.

Proposition 0.5. Let M, N, K be a complex manifolds and let $f \in \mathcal{O}(M, N)$, $g \in \mathcal{O}(N, \overleftarrow{K^n})$. Assume that $f(M) \cap N_g \neq \emptyset$. Then $g \circ f \in \mathcal{O}(M_{g \circ f}, \overleftarrow{K^n})$.

Proposition 0.6. Let $f \in \mathcal{O}(M, \overleftarrow{N^n})$ and $g \in \mathcal{O}(N^n, K)$ be symmetric. Then $\overleftarrow{g} \circ f \in \mathcal{O}(M, K)$.

Definition 0.7. Let M be an analytic submanifold of a manifold X. Let $U \subset X$ be a domain such that $U \cap M \neq \emptyset$. We say a holomorphic function

$$\Delta: U \longrightarrow (M \times \mathbb{C})^{r}$$

is a holomorphic multivalued projection $U \longrightarrow M$, if for any $x \in U \cap M$ such that $\Delta(x) = [(x_1, z_1), \ldots, (x_n, z_n)]$ we have $x_{j_0} = x$ for some $j_0 \in \{1, \ldots, n\}$ and $z_j = 0$ for any $j \in \{1, 2, \ldots, n\} \setminus \{j_0\}$.

Let \mathcal{P} denote set of all holomorphic multivalued projections $U \longrightarrow M$. Then we define the map

$$\Xi: (U \cap M) \times \mathcal{P} \longrightarrow \mathbb{C}, \quad \Xi(x, \Delta) := z_{j_0}.$$

Observe that Ξ is well defined.

Definition 0.8. We say $\Pi = (\Delta_j)_{j=1}^k$ is an system of holomorphic multivalued projections $U \longrightarrow M$, if $\Delta_j : U \longrightarrow (M \times \mathbb{C})^{n_j}$, $j = 1, \ldots, k$, are holomorphic multivalued projections and $\sum_{j=1}^k \Xi(x, \Delta_j) = 1$ for any $x \in U \cap M$.

Theorem 0.9. Assume that there exists a system Π of holomorphic multivalued projections on U. Then exists a linear continuous operator

$$L_{\Pi}: \mathcal{O}(M) \longrightarrow \mathcal{O}(U)$$

such that $L_{\Pi}(u)(x) = u(x)$ for $x \in U \cap M$.

Theorem 0.10. Let M be an analytic submanifold of a Stein manifold X. Let U be a relatively compact domain of X such that $U \cap M \neq \emptyset$. Then there exists a system of multivalued holomorphic projections $U \longrightarrow M$.

Definition 0.11. Let $f \in \mathcal{O}(X, \mathbb{C}^k)$. We say that a set $P \subset P_0 := M \cap f^{-1}(\mathbb{D}^k)$ is an *analytic polyhedron* in M ($P \in \mathcal{P}(M, k, f)$) if $P \subset \subset M$ and P is the union of a family of connected components of P_0 .

We say that an analytic polyhedron $P \in \mathcal{P}(M, k, f)$ is special if d = k.

Theorem 0.12 (cf. [2]). Assume that $P \in \mathcal{P}(M, k, f)$, $S \subset P$, $T \subset f^{-1}(\mathbb{D}^k)$ are compact. Then there exists a special analytic polyhedron $Q \in \mathcal{P}(M, d, g)$ such that $S \subset Q \subset P$ and $g(T) \subset \mathbb{D}^d$.

Theorem 0.13 (cf. [2]). Assume that X is Stein, $T \subset X$ is compact, and U is an open neighborhood of T such that $(U \setminus T) \cap \hat{T}_{\mathcal{O}(X)} = \emptyset$. Let $\mathcal{A} := \operatorname{cl}_{\mathcal{C}(T)}(\mathcal{O}(U)|_T)$. Then $\operatorname{Spec}(\mathcal{A}) = T$, i.e every non-zero character (homomorphism) $\xi : \mathcal{A} \longrightarrow \mathbb{C}$ is an evaluation (i.e. there exists an $x_0 \in T$ such that $\xi(f) = f(x_0)$ for every $f \in \mathcal{A}$).

Consequently (cf. [1], Chapter I, Section II, Corollary 10), if $w_1, \ldots, w_m \in \mathcal{A}$ have no common zeros on T, then there exist $c_1, \ldots, c_m \in \mathcal{A}$ such that $c_1w_1 + \cdots + c_mw_m = 1$.

Theorem 0.14 (cf. [2]). Assume that $P \in \mathcal{P}(M, d, f)$ is special. Then there exist $a \ k \in \mathbb{N}$ and a holomorphic mapping $\omega : \mathbb{D}^d \longrightarrow \overrightarrow{P^k}$ such that:

- $f^{-1}(z) \cap P = \{\omega(z)\}, z \in \mathbb{D}^d$,
- $\#\{\omega(z)\} = k \text{ for } z \in \mathbb{D}^d \setminus \Sigma', \text{ where } \Sigma' \text{ is a proper analytic set.}$

Proposition 0.15. Let ω , f, X, P be as above. Additionally assume that $f(U) \subset \mathbb{D}^d$, where $U \subset X$ is a domain and $U \cap P \neq \emptyset$. Then $\omega \circ f|_U \in \mathcal{O}(U, \overrightarrow{P^k})$.

Proposition 0.16. Let ω , f, X, P be as above. Then $\omega \circ f|_P \in \mathcal{O}(P, \overrightarrow{P^k})$.

References

- [1] R. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182.
- [2] E. Bishop, Some global problems in the theory of functions of several complex variables, Amer. J. Math. 83 (1961), 479-498.
- [3] R. Gunning, H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Engelewood Cliffs, 1965.
- [4] S. Lojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, 1991.
- [5] H. Whitney, Complex Analytic Varieties, Addison-Wesley Publishing Company, 1972.