Let X be a topological Hausdorff space. We define an equivalence relation on X^{k} by $\left(x_{1}, \ldots, x_{k}\right) \sim\left(y_{1}, \ldots, y_{k}\right): \Longleftrightarrow\left(y_{1}, \ldots, y_{k}\right)$ is a reordering of $\left(x_{1}, \ldots, x_{k}\right)$. Then we define the k-th symmetric product of $X: \stackrel{X^{k}}{ }:=X^{k} / \sim$. In the case $k=1$, we get $\overleftrightarrow{X^{1}}=X$. Now, we define the projection $\pi: X^{k} \longrightarrow \overleftrightarrow{X^{k}}, \pi(x):=[x]$. We put $\left[x_{1}, \ldots, x_{k}\right]:=\left[\left(x_{1}, \ldots, x_{k}\right)\right],\left\{\left[x_{1}, \ldots, x_{k}\right]\right\}:=\left\{x_{1}, \ldots, x_{k}\right\}$. If $x_{j} \neq x_{t}$ for $j \neq t$, then we define $\left[\left[x_{1}, \ldots, x_{k}\right]\right]:=\left[x_{1}, \ldots, x_{k}\right]$. Moreover, we put

$$
\left[x_{1}: \mu_{1}, \ldots, x_{\ell}: \mu_{\ell}\right]:=[\overbrace{x_{1}, \ldots, x_{1}}^{\mu_{1} \text {-times }}, \ldots, \overbrace{x_{\ell}, \ldots, x_{\ell}}^{\mu_{\ell} \text {-times }}]
$$

provided that $x_{j} \neq x_{t}$ for $j \neq t, \mu_{1}, \ldots, \mu_{\ell} \in \mathbb{N}, \mu_{1}+\cdots+\mu_{\ell}=k$. We define

$$
\left[A_{1}, \ldots, A_{k}\right]:=\left\{\left[x_{1}, \ldots, x_{k}\right]: x_{i} \in A_{i}, \quad i=1, \ldots, k\right\}
$$

The topology on $\overleftrightarrow{X^{k}}$ is defined by the basis

$$
\left[U_{1}, \ldots, U_{m}\right], \quad U_{i} \text { is open in } X, \quad i=1, \ldots, k
$$

Observe that π is continuous, open, and $\overleftrightarrow{X^{k}}$ is Hausdorff.
Definition 0.1. Let Y be Hausdorff topological space and let $F: X \longrightarrow \overleftrightarrow{Y^{n}}$ be continuous. Then we put

$$
\begin{gathered}
X_{F}^{(k)}:=\{x \in X: \#\{F(x)\}=k\} \\
\chi_{F}:=\max \left\{k: X_{F}^{(k)} \neq \varnothing\right\}, \quad X_{F}:=X_{F}^{\left(\chi_{F}\right)} .
\end{gathered}
$$

Note that X_{F} is open.
Proposition 0.2. Let F be as above. Suppose that

$$
a \in X_{F}, \quad F(a)=\left[b_{1}: \mu_{1}, \ldots, b_{k}: \mu_{k}\right], \quad k:=\chi_{F} .
$$

Then there is a neighborhood $U \subset X_{F}$ of a and there are uniquely defined continuous functions $f_{i}: U \longrightarrow Y, i=1, \ldots, k$, such that

$$
F(x)=\left[f_{1}(x): \mu_{1}, \ldots, f_{k}(x): \mu_{k}\right], \quad x \in U
$$

In the above situation, we will write $F=\mu_{1} f_{1} \oplus \cdots \oplus \mu_{k} f_{k}$ on U.
Proposition 0.3. Let $F: X^{k} \longrightarrow Y$. Then there exists a continuous function $\overleftrightarrow{F}: \overleftrightarrow{X^{k}} \longrightarrow Y$ such that $F=\overleftrightarrow{F} \circ \pi$ if and only if F is symmetric

Definition 0.4. Let M, N be complex manifolds and let M be connected. We say a continuous function $F: M \longrightarrow \overleftrightarrow{N^{n}}$ is holomorphic on $M\left(F \in \mathcal{O}\left(M, \overleftrightarrow{N^{n}}\right)\right)$, if:

- $M \backslash M_{F}$ is thin, i.e. every point $x_{0} \in M \backslash M_{F}$ has open connected neighborhood $V \subset M$ and a function $\varphi \in \mathcal{O}(V), \varphi \not \equiv 0$, such that $\left(M \backslash M_{F}\right) \cap V \subset \varphi^{-1}(0)$,
- for every $a \in M_{F}$, if $F=\mu_{1} f_{1} \oplus \cdots \oplus \mu_{k} f_{k}$ on V as in Proposition 0.2, then $f_{1}, \ldots, f_{k} \in \mathcal{O}(V)$.
If M is disconnected, then we say that F is holomorphic on M, if $\left.F\right|_{C} \in \mathcal{O}\left(C, \overleftrightarrow{N^{n}}\right)$ for any connected component $C \subset M$.
Proposition 0.5. Let M, N, K be a complex manifolds and let $f \in \mathcal{O}(M, N)$, $g \in \mathcal{O}\left(N, \overleftrightarrow{K^{n}}\right)$. Assume that $f(M) \cap N_{g} \neq \varnothing$. Then $g \circ f \in \mathcal{O}\left(M_{g \circ f}, \overleftrightarrow{K^{n}}\right)$.

Proposition 0.6. Let $f \in \mathcal{O}\left(M, \overleftrightarrow{N^{n}}\right)$ and $g \in \mathcal{O}\left(N^{n}, K\right)$ be symmetric. Then $\overleftrightarrow{g} \circ f \in \mathcal{O}(M, K)$

Definition 0.7. Let M be an analytic submanifold of a manifold X. Let $U \subset X$ be a domain such that $U \cap M \neq \varnothing$. We say a holomorphic function

$$
\Delta: U \longrightarrow \overleftarrow{(M \times \mathbb{C})^{n}}
$$

is a holomorphic multivalued projection $U \longrightarrow M$, if for any $x \in U \cap M$ such that $\Delta(x)=\left[\left(x_{1}, z_{1}\right), \ldots,\left(x_{n}, z_{n}\right)\right]$ we have $x_{j_{0}}=x$ for some $j_{0} \in\{1, \ldots, n\}$ and $z_{j}=0$ for any $j \in\{1,2, \ldots, n\} \backslash\left\{j_{0}\right\}$.

Let \mathcal{P} denote set of all holomorphic multivalued projections $U \longrightarrow M$. Then we define the map

$$
\Xi:(U \cap M) \times \mathcal{P} \longrightarrow \mathbb{C}, \quad \Xi(x, \Delta):=z_{j_{0}}
$$

Observe that Ξ is well defined.
Definition 0.8. We say $\Pi=\left(\Delta_{j}\right)_{j=1}^{k}$ is an system of holomorphic multivalued projections $U \longrightarrow M$, if $\Delta_{j}: U \longrightarrow \overleftrightarrow{(M \times \mathbb{C})^{n_{j}}}, j=1, \ldots, k$, are holomorphic multivalued projections and $\sum_{j=1}^{k} \Xi\left(x, \Delta_{j}\right)=1$ for any $x \in U \cap M$.

Theorem 0.9. Assume that there exists a system Π of holomorphic multivalued projections on U. Then exists a linear continuous operator

$$
L_{\Pi}: \mathcal{O}(M) \longrightarrow \mathcal{O}(U)
$$

such that $L_{\Pi}(u)(x)=u(x)$ for $x \in U \cap M$.
Theorem 0.10. Let M be an analytic submanifold of a Stein manifold X. Let U be a relatively compact domain of X such that $U \cap M \neq \varnothing$. Then there exists a system of multivalued holomorphic projections $U \longrightarrow M$.

Definition 0.11. Let $f \in \mathcal{O}\left(X, \mathbb{C}^{k}\right)$. We say that a set $P \subset P_{0}:=M \cap f^{-1}\left(\mathbb{D}^{k}\right)$ is an analytic polyhedron in $M(P \in \mathcal{P}(M, k, f))$ if $P \subset \subset M$ and P is the union of a family of connected components of P_{0}.

We say that an analytic polyhedron $P \in \mathcal{P}(M, k, f)$ is special if $d=k$.
Theorem 0.12 (cf. [2]). Assume that $P \in \mathcal{P}(M, k, f), S \subset P, T \subset f^{-1}\left(\mathbb{D}^{k}\right)$ are compact. Then there exists a special analytic polyhedron $Q \in \mathcal{P}(M, d, g)$ such that $S \subset Q \subset P$ and $g(T) \subset \mathbb{D}^{d}$.

Theorem 0.13 (cf. [2]). Assume that X is Stein, $T \subset X$ is compact, and U is an open neighborhood of T such that $(U \backslash T) \cap \hat{T}_{\mathcal{O}(X)}=\varnothing$. Let $\mathcal{A}:=\operatorname{cl}_{\mathcal{C}(T)}\left(\left.\mathcal{O}(U)\right|_{T}\right)$. Then $\operatorname{Spec}(\mathcal{A})=T$, i.e every non-zero character (homomorphism) $\xi: \mathcal{A} \longrightarrow \mathbb{C}$ is an evaluation (i.e. there exists an $x_{0} \in T$ such that $\xi(f)=f\left(x_{0}\right)$ for every $f \in \mathcal{A}$).

Consequently (cf. [1], Chapter I, Section II, Corollary 10), if $w_{1}, \ldots, w_{m} \in \mathcal{A}$ have no common zeros on T, then there exist $c_{1}, \ldots, c_{m} \in \mathcal{A}$ such that $c_{1} w_{1}+\cdots+$ $c_{m} w_{m}=1$.

Theorem 0.14 (cf. [2]). Assume that $P \in \mathcal{P}(M, d, f)$ is special. Then there exist $a k \in \mathbb{N}$ and a holomorphic mapping $\omega: \mathbb{D}^{d} \longrightarrow \overleftrightarrow{P^{k}}$ such that

- $f^{-1}(z) \cap P=\{\omega(z)\}, z \in \mathbb{D}^{d}$,
- $\#\{\omega(z)\}=k$ for $z \in \mathbb{D}^{d} \backslash \Sigma^{\prime}$, where Σ^{\prime} is a proper analytic set.

Proposition 0.15. Let ω, f, X, P be as above. Additionally assume that $f(U) \subset$ \mathbb{D}^{d}, where $U \subset X$ is a domain and $U \cap P \neq \varnothing$. Then $\left.\omega \circ f\right|_{U} \in \mathcal{O}\left(U, \overleftrightarrow{P^{k}}\right)$.
Proposition 0.16. Let ω, f, X, P be as above. Then $\left.\omega \circ f\right|_{P} \in \mathcal{O}\left(P, \overleftrightarrow{P^{k}}\right)$.

References

[1] R. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182.
[2] E. Bishop, Some global problems in the theory of functions of several complex variables, Amer. J. Math. 83 (1961), 479-498.
[3] R. Gunning, H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Engelewood Cliffs, 1965.
[4] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, 1991.
[5] H. Whitney, Complex Analytic Varieties, Addison-Wesley Publishing Company, 1972.

