
Let X be a topological Hausdorff space. We define an equivalence relation on
Xk by (x1, . . . , xk) ∼ (y1, . . . , yk) :⇐⇒ (y1, . . . , yk) is a reordering of (x1, . . . , xk).

Then we define the k-th symmetric product of X:
←→
Xk := Xk/∼ . In the case k = 1,

we get
←→
X1 = X. Now, we define the projection π : Xk −→

←→
Xk, π(x) := [x]. We

put [x1, . . . , xk] := [(x1, . . . , xk)], {[x1, . . . , xk]} := {x1, . . . , xk}. If xj 6= xt for
j 6= t, then we define [[x1, . . . , xk]] := [x1, . . . , xk]. Moreover, we put

[x1 :µ1, . . . , x` :µ`] := [

µ1-times︷ ︸︸ ︷
x1, . . . , x1, . . . ,

µ`-times︷ ︸︸ ︷
x`, . . . , x`],

provided that xj 6= xt for j 6= t, µ1, . . . , µ` ∈ N, µ1 + · · ·+ µ` = k. We define

[A1, . . . , Ak] :=
{
[x1, . . . , xk] : xi ∈ Ai, i = 1, . . . , k

}
,

The topology on
←→
Xk is defined by the basis

[U1, . . . , Um], Ui is open in X, i = 1, . . . , k.

Observe that π is continuous, open, and
←→
Xk is Hausdorff.

Definition 0.1. Let Y be Hausdorff topological space and let F : X −→
←→
Y n be

continuous. Then we put

X
(k)
F := {x ∈ X : #{F (x)} = k},

χF := max{k : X
(k)
F 6= ∅}, XF := X

(χF )
F .

Note that XF is open.

Proposition 0.2. Let F be as above. Suppose that

a ∈ XF , F (a) = [b1 :µ1, . . . , bk :µk], k := χF .

Then there is a neighborhood U ⊂ XF of a and there are uniquely defined continuous
functions fi : U −→ Y, i = 1, . . . , k, such that

F (x) = [f1(x) :µ1, . . . , fk(x) :µk], x ∈ U.

In the above situation, we will write F = µ1f1 ⊕ · · · ⊕ µkfk on U .

Proposition 0.3. Let F : Xk −→ Y . Then there exists a continuous function
←→
F :
←→
Xk −→ Y such that F =

←→
F ◦ π if and only if F is symmetric.

Definition 0.4. Let M,N be complex manifolds and let M be connected. We say

a continuous function F : M −→
←→
Nn is holomorphic on M (F ∈ O(M,

←→
Nn)), if:

• M \ MF is thin, i.e. every point x0 ∈ M \ MF has open connected
neighborhood V ⊂ M and a function ϕ ∈ O(V ), ϕ 6≡ 0, such that
(M \MF ) ∩ V ⊂ ϕ−1(0),

• for every a ∈MF , if F = µ1f1⊕· · ·⊕µkfk on V as in Proposition 0.2, then
f1, . . . , fk ∈ O(V ).

If M is disconnected, then we say that F is holomorphic on M , if F |C ∈ O(C,
←→
Nn)

for any connected component C ⊂M .

Proposition 0.5. Let M,N,K be a complex manifolds and let f ∈ O(M,N),

g ∈ O(N,
←→
Kn). Assume that f(M) ∩Ng 6= ∅. Then g ◦ f ∈ O(Mg◦f ,

←→
Kn).

1



2

Proposition 0.6. Let f ∈ O(M,
←→
Nn) and g ∈ O(Nn,K) be symmetric. Then

←→g ◦ f ∈ O(M,K).

Definition 0.7. Let M be an analytic submanifold of a manifold X. Let U ⊂ X
be a domain such that U ∩M 6= ∅. We say a holomorphic function

∆ : U −→
←−−−−−→
(M × C)n

is a holomorphic multivalued projection U −→ M , if for any x ∈ U ∩M such that
∆(x) = [(x1, z1), . . . , (xn, zn)] we have xj0 = x for some j0 ∈ {1, . . . , n} and zj = 0
for any j ∈ {1, 2, . . . , n} \ {j0}.

Let P denote set of all holomorphic multivalued projections U −→M . Then we
define the map

Ξ : (U ∩M)× P −→ C, Ξ(x,∆) := zj0 .

Observe that Ξ is well defined.

Definition 0.8. We say Π = (∆j)
k
j=1 is an system of holomorphic multivalued

projections U −→ M , if ∆j : U −→
←−−−−−−→
(M × C)nj , j = 1, . . . , k, are holomorphic

multivalued projections and
∑k
j=1 Ξ(x,∆j) = 1 for any x ∈ U ∩M .

Theorem 0.9. Assume that there exists a system Π of holomorphic multivalued
projections on U . Then exists a linear continuous operator

LΠ : O(M) −→ O(U)

such that LΠ(u)(x) = u(x) for x ∈ U ∩M .

Theorem 0.10. Let M be an analytic submanifold of a Stein manifold X. Let U
be a relatively compact domain of X such that U ∩M 6= ∅. Then there exists a
system of multivalued holomorphic projections U −→M .

Definition 0.11. Let f ∈ O(X,Ck). We say that a set P ⊂ P0 := M ∩ f−1(Dk) is
an analytic polyhedron in M (P ∈ P(M,k, f)) if P ⊂⊂M and P is the union of a
family of connected components of P0.

We say that an analytic polyhedron P ∈ P(M,k, f) is special if d = k.

Theorem 0.12 (cf. [2]). Assume that P ∈ P(M,k, f), S ⊂ P , T ⊂ f−1(Dk) are
compact. Then there exists a special analytic polyhedron Q ∈ P(M,d, g) such that
S ⊂ Q ⊂ P and g(T ) ⊂ Dd.

Theorem 0.13 (cf. [2]). Assume that X is Stein, T ⊂ X is compact, and U is an

open neighborhood of T such that (U \ T ) ∩ T̂O(X) = ∅. Let A := clC(T )(O(U)|T ).
Then Spec(A) = T , i.e every non-zero character (homomorphism) ξ : A −→ C is
an evaluation (i.e. there exists an x0 ∈ T such that ξ(f) = f(x0) for every f ∈ A).

Consequently (cf. [1], Chapter I, Section II, Corollary 10), if w1, . . . , wm ∈ A
have no common zeros on T , then there exist c1, . . . , cm ∈ A such that c1w1 + · · ·+
cmwm = 1.

Theorem 0.14 (cf. [2]). Assume that P ∈ P(M,d, f) is special. Then there exist

a k ∈ N and a holomorphic mapping ω : Dd −→
←→
P k such that:

• f−1(z) ∩ P = {ω(z)}, z ∈ Dd,
• #{ω(z)} = k for z ∈ Dd \ Σ′, where Σ′ is a proper analytic set.
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Proposition 0.15. Let ω, f , X,P be as above. Additionally assume that f(U) ⊂
Dd, where U ⊂ X is a domain and U ∩ P 6= ∅. Then ω ◦ f |U ∈ O(U,

←→
P k).

Proposition 0.16. Let ω, f , X,P be as above. Then ω ◦ f |P ∈ O(P,
←→
P k).
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