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For a bounded domain D ⊂ Cn let A(D) (resp. O(D)) denote the space of all continuous functions
f : D −→ C such that f |D is holomorphic (resp. f extends holomorphically to a neighborhood of D).
Let ∂SD (resp. ∂BD) be the Shilov (resp. Bergman) boundary of D, i.e. the minimal compact set K ⊂ D
such that max

K
|f | = max

D
|f | for every f ∈ A(D) (resp. f ∈ O(D)). Obviously, O(D) ⊂ A(D) and hence

∂BD ⊂ ∂SD ⊂ ∂D. Notice that, in general, ∂BD  ∂SD, e.g. for the domain D := {(z, w) ∈ C2 : 0 < |z| <
1, |w| < |z|− log |z|}.

The algebra A(D) (resp. B(D) := the uniform closure in A(D) of O(D)) endowed with the supremum
norm is a Banach algebra. A point a ∈ D is called a peak point for A(D) (resp. B(D)) if there is an f ∈ A(D)
(resp. B(D)) with f(a) = 1 and |f(z)| < 1 for all z ∈ D \ {a}; f is called an associated peak function. It is
known the peak points of A(D) (resp. B(D)) are dense in ∂SD (resp. ∂B(D))). Assume that the envelope

of holomorphy D̃ of D is univalent. Note that ∂SD̃ ⊂ ∂SD and ∂BD̃ ⊂ ∂BD. In the paper:
[JP] M. Jarnicki, P. Pflug, A counterexample to a theorem of Bremermann on Shilov boundaries, Proc.

Amer. Math. Soc. 143 (2015), 1675–1677,

we were interested in answering whether ∂SD = ∂SD̃ (resp. ∂BD = ∂BD̃). We studied the following
bounded Hartogs domain D ⊂ C2:

D := {(reiϕ, w) ∈ C2 : 1
2 < r < 1, ϕ ∈ (0, 2π),


0 < ϕ ≤ π

2 =⇒ |w| < 1
π
2 < ϕ < 3π

2 =⇒ |w| < 3
3π
2 ≤ ϕ < 2π =⇒ 2 < |w| < 3

};

it is known that D has a univalent envelope of holomorphy D̃. The main result of [JP] is the following
theorem.

Theorem 1. ∂SD̃  ∂SD, ∂BD̃  ∂BD, and O(D) \ A(D̃)|D 6= ∅.

The proof had the following two parts:

(1) ∂SD̃ ∩ (I × D(3)) = ∅, where I := [ 1
2 , 1], D is the unit disc, and D(r) := rD.

(2) There exists a function h ∈ O(D) (effectively given) such that

h(x,w) =

{
e−2π+i log x, if (x,w) ∈ I × A(2, 3)

ei log x, if (x,w) ∈ I × D

and |h| < 1 on the remaining part of D, where A(r−, r+) := D(r+) \ D(r−).

Unfortunately, the proof of (1) contains a gap. The aim of the present note is to close the above gap and

to prove some new results related to the Shilov and Bergman boundaries of D and D̃.

Let
A := {z ∈ C : 1

2 < |z| < 1}, I0 := ( 1
2 , 1), A0 := A \ I0.

By the Cauchy integral formula each function f ∈ A(D) extends holomorphically to the domain

G = {(z, w) ∈ A0 × C : |w|eV (z) < 1},

where V (reiϕ) :=

{
0, if 0 < ϕ ≤ π

2

− log 3, if π
2 < ϕ < 2π

. Hence the envelope of holomorphy D̃ is univalent and

D̃ = G̃ = {(z, w) ∈ A0 × C : |w|eṼ (z) < 1}, where Ṽ (z) := sup{u ∈ SH(A0) : u ≤ V }.

Notice that, by the maximum principle for subharmonic functions, we have Ṽ (z) < 0, z ∈ A0. Thus,

∂D ∩ (U × D(3)) ⊂ D̃, where U := {reiϕ : r ∈ I0, 0 < ϕ < π
2 }. Hence ∂D̃ ∩ (U × D(3)) does not contain

points of ∂SD̃.
We are going to prove the following theorem.

Theorem 2. (a) ∂SD̃ ∩ (I0 × D(3)) = ∅.
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(b) For any a ∈ I there exists a g = ga ∈ O(D) such that g(a,w) = 1 for all w ∈ D, and |g| < 1 on
D \ ({a} × D). In particular, ∂BD ∩ ({a} × D) 6= ∅.

(c) {a} × T ⊂ ∂BD for every a ∈ I0, where T := ∂D. Therefore, I × T ⊂ ∂BD.
(d) Let M0 := (iI0)× (3T). Then ∂BD \M0 = ∂SD \M0

=
(
{reiϕ : r ∈ { 1

2 , 1},
π
2 ≤ ϕ ≤ 2π} × (3T)

)
∪
(
I0 × (3T)

)
∪
(
I0 × T

)
∪
(
{reiϕ : r ∈ { 1

2 , 1}, 0 ≤ ϕ ≤ π
2 } × T

)
=: M1 ∪M2 ∪M3 ∪M4.

Remark 3. (i) Observe that (a) and (b) close gaps in our former proof.

Indeed, we get ∅ 6= I0 × T ⊂ ∂BD \ ∂SD̃ ⊂ (∂SD \ ∂SD̃) ∩ (∂BD \ ∂BD̃). Hence ∂SD̃  ∂SD and

∂BD̃  ∂BD.
Moreover, if a ∈ I0, then ga ∈ O(D) \ A(D̃)|D.

(ii) It seems to be an open problem whether M0 ⊂ ∂SD (resp. M0 ⊂ ∂BD).

Proof of Theorem 2. First, let us make the following elementary observation.
(*) Let Σ be an open subset of the boundary ∂Ω of a bounded domain Ω ⊂ Cn. Suppose that max∂Ω |f | =

max∂Ω\Σ |f | for every f ∈ A(Ω) (resp. O(Ω)). Then ∂SΩ ∩ Σ = ∅ (resp. ∂BΩ ∩ Σ = ∅).

(a) For all a ∈ I0 and f ∈ A(D̃) the function f(a, ·) extends holomorphically to D(3).

Indeed, we may define f̂(z, w) := 1
2πi

∫
|ζ|=5/2

f(z,ζ)
ζ−w dζ, z ∈ A( 1

2 , 1), π
2 < arg z ≤ 2π, |w| < 5

2 . Then f̂ is

holomorphic and coincide with f when π
2 < arg z < π. Hence using identity theorem we see that f = f̂ on

their common domain of definition. Using continuity of f we get the claimed extension of f(a, ·).
In particular, max{a}×A(1,3) |f(a, ·)| = max{a}×3T |f(a, ·)|. Hence, by (*) with Ω := D̃ and Σ := I0 ×

A(1, 3), we conclude that ∂SD̃ ∩ (I0 × A(1, 3)) = ∅. The same argument shows that ∂SD̃ ∩ (I0 × D) = ∅.

Suppose that (z0, w0) ∈ (I0 × T) ∩ ∂SD̃. Then there is a peak point (z1, w1) nearby. Let f ∈ A(D̃) be a
function peaking there. The maximum principle excludes the situation where z1 ∈ I0. Thus z1 ∈ U , but we

already know that ∂SD̃ ∩ (U × D(3)) = ∅, so it is impossible.

Finally, ∂SD̃ ∩ (I0 × D(3)) = ∅.

(b) Fix an a ∈ I and let h be as in (2), w0 := ei log a ∈ T. Define ϕ(w) := 1
2w0

(w + w0), g := ϕ ◦ h. It is

obvious that g ∈ O(D), g(a,w) = 1 for all w ∈ D, and |g| < 1 on D \ ({a} × D).

(c) Using (*) we have ∂BD ∩ (I0 × D) = ∅. Hence, by (b), ∂BD ∩ ({a} × T) 6= ∅ for every a ∈ I0. Now
using rotational invariance in the second variable of ∂BD leads to {a} × T ⊂ ∂BD for all a ∈ I0.

(d) Notice that also ∂SD is invariant under rotations of the second variable.

• Every point from ∂A× 3T is a peak point for O(A× D(3)).

Indeed, fix a point (a, b) ∈ ∂A× 3T. Then a is a peak point for O(A) and b is a peak point for O(D(3)).
So it suffices to take the product of the corresponding peak functions to see that (a, b) is a peak point for

O(A× D(3)).
Thus M1 ⊂ ∂BD ⊂ ∂SD.

• Consider the holomorphic function D 3 (z, w)
Φ7−→ Log(z) ∈ R := [− log 2, 0]× [0, 2π], where Log is a

branch of logarithm with Log(−1) = π. Note that Φ ∈ O(D). For every a ∈ I0 we have Φ(a,w) ∈
(− log 2, 0)× {2π} ∈ ∂R whenever w ∈ A(2, 3). It is clear that there exists a function ψa ∈ O(R) such that

ψa(Φ(a,w)) = 1, w ∈ A(2, 3), and |ψa| < 1 on R \ {Φ(a,w)}. Then the function D 3 (z, w)
fa7−→ ψa(Φ(z, w))

may be considered as a function of class O(D). Observe that fa(a,w) = 1 for all w ∈ A(2, 3), and |fa| < 1

on D \ ({a} × A(2, 3)). Fix a b ∈ 3T and define g(z, w) := fa(z, w) 1+w/b
2 . Then g ∈ O(D) and g peaks at

(a, b). Consequently, M2 ⊂ ∂BD ⊂ ∂SD.
• By (c), M3 ⊂ ∂BD ⊂ ∂SD.
• For every a = reiϕ with r ∈ { 1

2 , 1}, 0 < ϕ < π
2 there exists a function ψ ∈ O(A) such that ψ(a) = 1

and |ψ| < 1 on A \ {a}. Hence ∂BD∩ ({a}×D) 6= ∅. Now, by (*) with Ω := D, Σ := {reiϕ : r ∈ { 1
2 , 1}, 0 <

ϕ < π
2 } × D, we conclude that M4 ⊂ ∂BD ⊂ ∂SD.

The remaining part of ∂D, i.e. the set Σ := ∂D \ (M0 ∪M1 ∪M2 ∪M3 ∪M4), is open in ∂D. It remains
to use (*). �
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