A counterexample to a theorem of Bremermann on Shilov boundaries - revisited

Marek Jarnicki, Peter Pflug (November 9, 2015)
For a bounded domain $D \subset \mathbb{C}^{n}$ let $\mathcal{A}(D)$ (resp. $\mathcal{O}(\bar{D})$) denote the space of all continuous functions $f: \bar{D} \longrightarrow \mathbb{C}$ such that $\left.f\right|_{D}$ is holomorphic (resp. f extends holomorphically to a neighborhood of \bar{D}). Let $\partial_{S} D$ (resp. $\partial_{B} D$) be the Shilov (resp. Bergman) boundary of D, i.e. the minimal compact set $K \subset \bar{D}$ such that $\max _{K}|f|=\max _{\bar{D}}|f|$ for every $f \in \mathcal{A}(D)$ (resp. $f \in \mathcal{O}(\bar{D})$). Obviously, $\mathcal{O}(\bar{D}) \subset \mathcal{A}(D)$ and hence $\partial_{B} D \subset \partial_{S} D \subset \partial D$. Notice that, in general, $\partial_{B} D \varsubsetneqq \partial_{S} D$, e.g. for the domain $D:=\left\{(z, w) \in \mathbb{C}^{2}: 0<|z|<\right.$ $\left.1,|w|<|z|^{-\log |z|}\right\}$.

The algebra $\mathcal{A}(D)$ (resp. $\mathcal{B}(D):=$ the uniform closure in $\mathcal{A}(D)$ of $\mathcal{O}(\bar{D})$) endowed with the supremum norm is a Banach algebra. A point $a \in \bar{D}$ is called a peak point for $\mathcal{A}(D)($ resp. $\mathcal{B}(D))$ if there is an $f \in \mathcal{A}(D)$ (resp. $\mathcal{B}(D)$) with $f(a)=1$ and $|f(z)|<1$ for all $z \in \bar{D} \backslash\{a\} ; f$ is called an associated peak function. It is known the peak points of $\mathcal{A}(D)$ (resp. $\mathcal{B}(D)$) are dense in $\partial_{S} D$ (resp. $\left.\partial_{B}(D)\right)$). Assume that the envelope of holomorphy \widetilde{D} of D is univalent. Note that $\partial_{S} \widetilde{D} \subset \partial_{S} D$ and $\partial_{B} \widetilde{D} \subset \partial_{B} D$. In the paper:
[JP] M. Jarnicki, P. Pflug, A counterexample to a theorem of Bremermann on Shilov boundaries, Proc. Amer. Math. Soc. 143 (2015), 1675-1677,
we were interested in answering whether $\partial_{S} D=\partial_{S} \widetilde{D}$ (resp. $\partial_{B} D=\partial_{B} \widetilde{D}$). We studied the following bounded Hartogs domain $D \subset \mathbb{C}^{2}$:

$$
D:=\left\{\left(r e^{i \varphi}, w\right) \in \mathbb{C}^{2}: \frac{1}{2}<r<1, \varphi \in(0,2 \pi),\left\{\begin{array}{l}
0<\varphi \leq \frac{\pi}{2} \Longrightarrow|w|<1 \\
\frac{\pi}{2}<\varphi<\frac{3 \pi}{2} \Longrightarrow|w|<3 \\
\frac{3 \pi}{2} \leq \varphi<2 \pi \Longrightarrow 2<|w|<3
\end{array}\right\} ;\right.
$$

it is known that D has a univalent envelope of holomorphy \widetilde{D}. The main result of [JP] is the following theorem.
Theorem 1. $\partial_{S} \widetilde{D} \not q \partial_{S} D, \partial_{B} \widetilde{D} \nsubseteq \partial_{B} D$, and $\left.\mathcal{O}(\bar{D}) \backslash \mathcal{A}(\widetilde{D})\right|_{\bar{D}} \neq \varnothing$.
The proof had the following two parts:
(1) $\partial_{S} \widetilde{D} \cap(I \times \mathbb{D}(3))=\varnothing$, where $I:=\left[\frac{1}{2}, 1\right], \mathbb{D}$ is the unit disc, and $\mathbb{D}(r):=r \mathbb{D}$.
(2) There exists a function $h \in \mathcal{O}(\bar{D})$ (effectively given) such that

$$
h(x, w)= \begin{cases}e^{-2 \pi+i \log x}, & \text { if }(x, w) \in I \times \overline{\mathbb{A}}(2,3) \\ e^{i \log x}, & \text { if }(x, w) \in I \times \overline{\mathbb{D}}\end{cases}
$$

and $|h|<1$ on the remaining part of \bar{D}, where $\mathbb{A}\left(r_{-}, r_{+}\right):=\mathbb{D}\left(r_{+}\right) \backslash \overline{\mathbb{D}}\left(r_{-}\right)$.
Unfortunately, the proof of (1) contains a gap. The aim of the present note is to close the above gap and to prove some new results related to the Shilov and Bergman boundaries of D and \widetilde{D}.

Let

$$
A:=\left\{z \in \mathbb{C}: \frac{1}{2}<|z|<1\right\}, \quad I_{0}:=\left(\frac{1}{2}, 1\right), \quad A_{0}:=A \backslash I_{0} .
$$

By the Cauchy integral formula each function $f \in \mathcal{A}(D)$ extends holomorphically to the domain

$$
G=\left\{(z, w) \in A_{0} \times \mathbb{C}:|w| e^{V(z)}<1\right\}
$$

where $V\left(r e^{i \varphi}\right):=\left\{\begin{array}{ll}0, & \text { if } 0<\varphi \leq \frac{\pi}{2} \\ -\log 3, & \text { if } \frac{\pi}{2}<\varphi<2 \pi\end{array}\right.$. Hence the envelope of holomorphy \widetilde{D} is univalent and

$$
\widetilde{D}=\widetilde{G}=\left\{(z, w) \in A_{0} \times \mathbb{C}:|w| e^{\widetilde{V}(z)}<1\right\}, \text { where } \widetilde{V}(z):=\sup \left\{u \in \mathcal{S H}\left(A_{0}\right): u \leq V\right\}
$$

Notice that, by the maximum principle for subharmonic functions, we have $\widetilde{V}(z)<0, z \in A_{0}$. Thus, $\partial D \cap(U \times \mathbb{D}(3)) \subset \widetilde{D}$, where $U:=\left\{r e^{i \varphi}: r \in I_{0}, 0<\varphi<\frac{\pi}{2}\right\}$. Hence $\partial \widetilde{D} \cap(U \times \mathbb{D}(3))$ does not contain points of $\partial_{S} \widetilde{D}$.

We are going to prove the following theorem.
Theorem 2. (a) $\partial_{S} \widetilde{D} \cap\left(I_{0} \times \mathbb{D}(3)\right)=\varnothing$.
(b) For any $a \in I$ there exists a $g=g_{a} \in \mathcal{O}(\bar{D})$ such that $g(a, w)=1$ for all $w \in \overline{\mathbb{D}}$, and $|g|<1$ on $\bar{D} \backslash(\{a\} \times \overline{\mathbb{D}})$. In particular, $\partial_{B} D \cap(\{a\} \times \overline{\mathbb{D}}) \neq \varnothing$.
(c) $\{a\} \times \mathbb{T} \subset \partial_{B} D$ for every $a \in I_{0}$, where $\mathbb{T}:=\partial \mathbb{D}$. Therefore, $I \times \mathbb{T} \subset \partial_{B} D$.
(d) Let $M_{0}:=\left(i I_{0}\right) \times(3 \mathbb{T})$. Then $\partial_{B} D \backslash M_{0}=\partial_{S} D \backslash M_{0}$

$$
\begin{aligned}
& =\left(\left\{r e^{i \varphi}: r \in\left\{\frac{1}{2}, 1\right\}, \frac{\pi}{2} \leq \varphi \leq 2 \pi\right\} \times(3 \mathbb{T})\right) \cup\left(I_{0} \times(3 \mathbb{T})\right) \cup\left(I_{0} \times \mathbb{T}\right) \cup\left(\left\{r e^{i \varphi}: r \in\left\{\frac{1}{2}, 1\right\}, 0 \leq \varphi \leq \frac{\pi}{2}\right\} \times \mathbb{T}\right) \\
& =: M_{1} \cup M_{2} \cup M_{3} \cup M_{4}
\end{aligned}
$$

Remark 3. (i) Observe that (a) and (b) close gaps in our former proof.
Indeed, we get $\varnothing \neq I_{0} \times \mathbb{T} \subset \partial_{B} D \backslash \partial_{S} \widetilde{D} \subset\left(\partial_{S} D \backslash \partial_{S} \widetilde{D}\right) \cap\left(\partial_{B} D \backslash \partial_{B} \widetilde{D}\right)$. Hence $\partial_{S} \widetilde{D} \nsubseteq \partial_{S} D$ and $\partial_{B} \widetilde{D} \nsubseteq \partial_{B} D$.

Moreover, if $a \in I_{0}$, then $\left.g_{a} \in \mathcal{O}(\bar{D}) \backslash \mathcal{A}(\widetilde{D})\right|_{\bar{D}}$.
(ii) It seems to be an open problem whether $M_{0} \subset \partial_{S} D$ (resp. $M_{0} \subset \partial_{B} D$).

Proof of Theorem 2. First, let us make the following elementary observation.
$\left(^{*}\right)$ Let Σ be an open subset of the boundary $\partial \Omega$ of a bounded domain $\Omega \subset \mathbb{C}^{n}$. Suppose that $\max _{\partial \Omega}|f|=$ $\max _{\partial \Omega \backslash \Sigma}|f|$ for every $f \in \mathcal{A}(\Omega)\left(\right.$ resp. $\mathcal{O}(\bar{\Omega})$). Then $\partial_{S} \Omega \cap \Sigma=\varnothing$ (resp. $\partial_{B} \Omega \cap \Sigma=\varnothing$).
(a) For all $a \in I_{0}$ and $f \in \mathcal{A}(\widetilde{D})$ the function $f(a, \cdot)$ extends holomorphically to $\mathbb{D}(3)$.

Indeed, we may define $\widehat{f}(z, w):=\frac{1}{2 \pi i} \int_{|\zeta|=5 / 2} \frac{f(z, \zeta)}{\zeta-w} d \zeta, z \in \mathbb{A}\left(\frac{1}{2}, 1\right), \frac{\pi}{2}<\arg z \leq 2 \pi,|w|<\frac{5}{2}$. Then \widehat{f} is holomorphic and coincide with f when $\frac{\pi}{2}<\arg z<\pi$. Hence using identity theorem we see that $f=\widehat{f}$ on their common domain of definition. Using continuity of f we get the claimed extension of $f(a, \cdot)$.

In particular, $\max _{\{a\} \times \overline{\mathbb{A}}(1,3)}|f(a, \cdot)|=\max _{\{a\} \times 3 \mathbb{T}}|f(a, \cdot)|$. Hence, by $\left({ }^{*}\right)$ with $\Omega:=\widetilde{D}$ and $\Sigma:=I_{0} \times$ $\mathbb{A}(1,3)$, we conclude that $\partial_{S} \widetilde{D} \cap\left(I_{0} \times \mathbb{A}(1,3)\right)=\varnothing$. The same argument shows that $\partial_{S} \widetilde{D} \cap\left(I_{0} \times \mathbb{D}\right)=\varnothing$.

Suppose that $\left(z_{0}, w_{0}\right) \in\left(I_{0} \times \mathbb{T}\right) \cap \partial_{S} \widetilde{D}$. Then there is a peak point $\left(z_{1}, w_{1}\right)$ nearby. Let $f \in \mathcal{A}(\widetilde{D})$ be a function peaking there. The maximum principle excludes the situation where $z_{1} \in I_{0}$. Thus $z_{1} \in U$, but we already know that $\partial_{S} \widetilde{D} \cap(U \times \mathbb{D}(3))=\varnothing$, so it is impossible.

Finally, $\partial_{S} \widetilde{D} \cap\left(I_{0} \times \mathbb{D}(3)\right)=\varnothing$.
(b) Fix an $a \in I$ and let h be as in (2), $w_{0}:=e^{i \log a} \in \mathbb{T}$. Define $\varphi(w):=\frac{1}{2 w_{0}}\left(w+w_{0}\right), g:=\varphi \circ h$. It is obvious that $g \in \mathcal{O}(\bar{D}), g(a, w)=1$ for all $w \in \overline{\mathbb{D}}$, and $|g|<1$ on $\bar{D} \backslash(\{a\} \times \overline{\mathbb{D}})$.
(c) Using $\left(^{*}\right)$ we have $\partial_{B} D \cap\left(I_{0} \times \mathbb{D}\right)=\varnothing$. Hence, by (b), $\partial_{B} D \cap(\{a\} \times \mathbb{T}) \neq \varnothing$ for every $a \in I_{0}$. Now using rotational invariance in the second variable of $\partial_{B} D$ leads to $\{a\} \times \mathbb{T} \subset \partial_{B} D$ for all $a \in I_{0}$.
(d) Notice that also $\partial_{S} D$ is invariant under rotations of the second variable.

- Every point from $\partial A \times 3 \mathbb{T}$ is a peak point for $\mathcal{O}(\overline{A \times \mathbb{D}(3)})$.

Indeed, fix a point $(a, b) \in \partial A \times 3 \mathbb{T}$. Then a is a peak point for $\mathcal{O}(\bar{A})$ and b is a peak point for $\mathcal{O}(\overline{\mathbb{D}(3)})$. So it suffices to take the product of the corresponding peak functions to see that (a, b) is a peak point for $\mathcal{O}(\overline{A \times \mathbb{D}(3)})$.

Thus $M_{1} \subset \partial_{B} D \subset \partial_{S} D$.

- Consider the holomorphic function $\bar{D} \ni(z, w) \stackrel{\Phi}{\longmapsto} \log (z) \in R:=[-\log 2,0] \times[0,2 \pi]$, where \log is a branch of $\operatorname{logarithm}$ with $\log (-1)=\pi$. Note that $\Phi \in \mathcal{O}(\bar{D})$. For every $a \in I_{0}$ we have $\Phi(a, w) \in$ $(-\log 2,0) \times\{2 \pi\} \in \partial R$ whenever $w \in \overline{\mathbb{A}}(2,3)$. It is clear that there exists a function $\psi_{a} \in \mathcal{O}(\bar{R})$ such that $\psi_{a}(\Phi(a, w))=1, w \in \overline{\mathbb{A}}(2,3)$, and $\left|\psi_{a}\right|<1$ on $\bar{R} \backslash\{\Phi(a, w)\}$. Then the function $\bar{D} \ni(z, w) \stackrel{f_{a}}{\longmapsto} \psi_{a}(\Phi(z, w))$ may be considered as a function of class $\mathcal{O}(\bar{D})$. Observe that $f_{a}(a, w)=1$ for all $w \in \overline{\mathbb{A}}(2,3)$, and $\left|f_{a}\right|<1$ on $\bar{D} \backslash(\{a\} \times \overline{\mathbb{A}}(2,3))$. Fix a $b \in 3 \mathbb{T}$ and define $g(z, w):=f_{a}(z, w) \frac{1+w / b}{2}$. Then $g \in \mathcal{O}(\bar{D})$ and g peaks at (a, b). Consequently, $M_{2} \subset \partial_{B} D \subset \partial_{S} D$.
- By (c), $M_{3} \subset \partial_{B} D \subset \partial_{S} D$.
- For every $a=r e^{i \varphi}$ with $r \in\left\{\frac{1}{2}, 1\right\}, 0<\varphi<\frac{\pi}{2}$ there exists a function $\psi \in \mathcal{O}(\bar{A})$ such that $\psi(a)=1$ and $|\psi|<1$ on $\bar{A} \backslash\{a\}$. Hence $\partial_{B} D \cap(\{a\} \times \overline{\mathbb{D}}) \neq \varnothing$. Now, by $\left(^{*}\right)$ with $\Omega:=D, \Sigma:=\left\{r e^{i \varphi}: r \in\left\{\frac{1}{2}, 1\right\}, 0<\right.$ $\left.\varphi<\frac{\pi}{2}\right\} \times \mathbb{D}$, we conclude that $M_{4} \subset \partial_{B} D \subset \partial_{S} D$.

The remaining part of ∂D, i.e. the set $\Sigma:=\partial D \backslash\left(M_{0} \cup M_{1} \cup M_{2} \cup M_{3} \cup M_{4}\right)$, is open in ∂D. It remains to use (*).

