
PROPER HOLOMORPHIC MAPPINGS BETWEEN GENERALIZED HARTOGS

TRIANGLES

PAWE L ZAPA LOWSKI

1. Main results

The aim of this paper is to answer all questions posed by Jarnicki and Pflug in [6], Sections 2.5.2 and
2.5.3, concerning proper holomorphic mappings between generalized Hartogs triangles and holomorphic
automorphisms of such domains.

Let n,m ∈ N. For p = (p1, . . . , pn) ∈ Rn>0 and q = (q1, . . . , qm) ∈ Rm>0 define the generalized Hartogs
triangle as

Fp,q :=
{

(z, w) ∈ Cn × Cm :

n∑
j=1

|zj |2pj <
m∑
j=1

|wj |2qj < 1
}
.

If n = m = 1, then F1,1 is the standard Hartogs triangle.
Let p, p̃ ∈ Rn>0, q, q̃ ∈ Rm>0. The problem of characterization of proper holomorphic mappings

(1) Fp,q −→ Fp̃,q̃
and the group Aut(Fp,q) of holomorphic automorphisms of Fp,q has been investigated in many papers
(see, e.g., [8], [3], [4], [1], [2]).

Here is some notation. Let Σn denote the group of the permutations of the set {1, . . . , n}. For
σ ∈ Σn, z = (z1, . . . , zn) ∈ Cn denote zσ := (zσ(1), . . . , zσ(n)) and Σn(z) := {σ ∈ Σn : zσ = z}. We
shall also write σ(z) := zσ. For α = (α1, . . . , αn) ∈ Rn>0 and β = (β1, . . . , βn) ∈ Rn>0 we shall write
αβ := (α1β1, . . . , αnβn) and 1/β := (1/β1, . . . , 1/βn). If, moreover, α ∈ Nn, then

Ψα(z) := zα := (zα1
1 , . . . , zαnn ), z = (z1, . . . , zn) ∈ Cn.

Theorem 1. Let n = m = 1, p, q, p̃, q̃ ∈ R>0.

(a) There exists a proper holomorphic mapping Fp,q −→ Fp̃,q̃ if and only if there exist k, l ∈ N such that

lq̃

p̃
− kq

p
∈ Z.

(b) A mapping F : Fp,q −→ Fp̃,q̃ is proper and holomorphic if and only if

F (z, w) =

{(
ζzkwlq̃/p̃−kq/p, ξwl

)
, if q/p /∈ Q(

ζzk
′
wlq̃/p̃−k

′q/pB
(
zp

′
w−q

′
)
, ξwl

)
, if q/p ∈ Q

, (z, w) ∈ Fp,q,

where ζ, ξ ∈ T, k, l ∈ N, k′ ∈ N ∪ {0} are such that lq̃/p̃− kq/p ∈ Z, lq̃/p̃− k′q/p ∈ Z, p′, q′ ∈ N are
relatively prime with p/q = p′/q′, and B is a finite Blaschke product non-vanishing at 0 (if B ≡ 1,
then k′ > 0).

In particular, there are non-trivial proper holomorphic self-mappings in Fp,q.
(c) F ∈ Aut(Fp,q) if and only if

F (z, w) =
(
wq/pφ

(
zw−q/p

)
, ξw

)
, (z, w) ∈ Fp,q,

where ξ ∈ T, and φ ∈ Aut(D) (moreover, φ(0) = 0 whenever q/p /∈ N).

Remark 2. The counterpart of the Theorem 1 for p, q, p̃, q̃ ∈ N was proved (with minor mistakes) in [8],
where it was claimed that a mapping F : Fp,q −→ Fp̃,q̃ is proper and holomorphic if and only if

(2) F (z, w) =

{(
ζzkwlq̃/p̃−kq/p, ξwl

)
, if q/p /∈ N, lq̃/p̃− kq/p ∈ Z(

ζwlq̃/p̃B
(
zw−q/p

)
, ξwl

)
, if q/p ∈ N, lq̃/p̃ ∈ N

,

where ζ, ξ ∈ T, k, l ∈ N, and B is a finite Blaschke product. Nevertheless, the mapping

F2,3 3 (z, w) 7−→
(
z3w3B

(
z2w−3

)
, w3

)
∈ F2,5,
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where B is non-constant finite Blaschke product non-vanishing at 0, is proper holomorphic but not of
the form (2). In fact, from the Theorem 1 (b) it follows immediately that for any choice of p, q, p̃, q̃ ∈ N
one may find a proper holomorphic mapping F : Fp,q −→ Fp̃,q̃ having, as a factor of the first component,
non-constant Blaschke product non-vanishing at 0.

Theorem 3. Let n = 1, m ≥ 2, p, p̃ ∈ R>0, q, q̃ ∈ Rm>0.

(a) There exists a proper holomorphic mapping Fp,q −→ Fp̃,q̃ if and only if there exists σ ∈ Σm such that

p

p̃
∈ N and

qσ
q̃
∈ Nm.

(b) A mapping F : Fp,q −→ Fp̃,q̃ is proper and holomorphic if and only if

F (z, w) = (ζzk, h(w)), (z, w) ∈ Fp,q,

where ζ ∈ T, k ∈ N, and h : Eq −→ Eq̃ is proper and holomorphic such that h(0) = 0 (cf. Theorem 7).
In particular, there are non-trivial proper holomorphic self-mappings in Fp,q.

(c) F ∈ Aut(Fp,q) if and only if

F (z, w) = (ζz, h(w)), (z, w) ∈ Fp,q,

where ζ ∈ T, h ∈ Aut(Eq), h(0) = 0 (cf. Theorem 7).

Theorem 4. Let n ≥ 2, m = 1, p = (p1, . . . , pn), p̃ = (p̃1, . . . , p̃n) ∈ Rn>0, q, q̃ ∈ R>0.

(a) There exists a proper holomorphic mapping Fp,q −→ Fp̃,q̃ if and only if there exist σ ∈ Σn and r ∈ N
such that

pσ
p̃
∈ Nn and

rq̃ − q
p̃j

∈ Z, j = 1, . . . , n.

(b) A mapping F = (G1, . . . , Gn, H) : Fp,q −→ Fp̃,q̃ is proper and holomorphic if and only if{
Gj(z, w) = wrq̃/p̃jfj

(
z1w

−q/p1 , . . . , znw
−q/pn

)
, j = 1, . . . , n,

H(z, w) = ξwr,
, (z, w) ∈ Fp,q,

where (f1, . . . , fn) : Ep −→ Ep̃ is proper and holomorphic (cf. Theorem 7), ξ ∈ T, and r ∈ N is such
that (rq̃ − q)/p̃j ∈ Z, j = 1, . . . , n. Moreover, if there is a j such that 1/p̃j ∈ N, then q ∈ N and
rq̃/p̃j ∈ N whenever 1/p̃j ∈ N.

In particular, there are non-trivial proper holomorphic self-mappings in Fp,q.
(c) F = (G1, . . . , Gn, H) ∈ Aut(Fp,q) if and only if{

Gj(z, w) = wq/pjgj
(
z1w

−q/p1 , . . . , znw
−q/pn

)
, j = 1, . . . , n,

H(z, w) = ξw,
, (z, w) ∈ Fp,q,

where (g1, . . . , gn) ∈ Aut(Ep) (cf. Theorem 7), ξ ∈ T.

Remark 5. It should be mentioned, that although the structure of the automorphism group Aut(Fp,q)
does not change when passing from p ∈ Nn, q ∈ N to p ∈ Rn>0, q > 0, the class of proper holomorphic
mappings Fp,q −→ Fp̃,q̃ does. It is a consequence of the fact that the structure of the proper holomorphic
mappings Ep −→ Ep̃ changes when passing from p, p̃ ∈ Nn to p, p̃ ∈ Rn>0 (see Section 2).

Theorem 6. Let n,m ≥ 2, p, p̃ ∈ Rn>0, q, q̃ ∈ Rm>0.

(a) There exists a proper holomorphic mapping Fp,q −→ Fp̃,q̃ if and only if there exist σ ∈ Σn and
τ ∈ Σm such that

pσ
p̃
∈ Nn and

qτ
q̃
∈ Nm.

(b) A mapping F : Fp,q −→ Fp̃,q̃ is proper and holomorphic if and only if

F (z, w) = (g(z), h(w)), (z, w) ∈ Fp,q,

where mappings g : Ep −→ Ep̃ and h : Eq −→ Eq̃ are proper and holomorphic such that g(0) = 0,
h(0) = 0 (cf. Theorem 7).

In particular, every proper holomorphic self-mapping in Fp,q is an automorphism.
(c) F ∈ Aut(Fp,q) if and only if

F (z, w) = (g(z), h(w)), (z, w) ∈ Fp,q,

where g ∈ Aut(Ep), h ∈ Aut(Eq) with g(0) = 0, h(0) = 0 (cf. Theorem 7).
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2. Complex ellipsoids

For p = (p1, . . . , pn) ∈ Rn>0, define the complex ellipsoid

Ep :=
{

(z1, . . . , zn) ∈ Cn :

n∑
j=1

|zj |2pj < 1
}
.

Note that E(1,...,1) is the unit ball in Cn. Moreover, if p/q ∈ Nn, then Ψp/q : Ep −→ Eq is proper and
holomorphic.

The problem of characterization of proper holomorphic mappings between two given complex ellipsoids
has been investigated in [7] and [5].

Theorem 7. Assume that n ≥ 2, p, q ∈ Rn>0.

(a) (cf. [7], [5]). There exists a proper holomorphic mapping Ep −→ Eq if and only if there exists σ ∈ Σn
such that

pσ
q
∈ Nn.

(b) A mapping F : Ep −→ Eq is proper and holomorphic if and only if

F = Ψpσ/(qr) ◦ φ ◦Ψr ◦ σ,

where σ ∈ Σn is such that pσ/q ∈ Nn, r ∈ Nn is such that pσ/(qr) ∈ Nn, and φ ∈ Aut(Epσ/r).
In particular, every proper holomorphic self-mapping in Ep is an automorphism.

(c) (cf. [7], [5]). If 0 ≤ k ≤ n, p ∈ {1}k×(R>0\{1})n−k, z = (z′, zk+1, . . . , zn), then F = (F1, . . . , Fn) ∈
Aut(Ep) if and only if

Fj(z) =


Hj(z

′), if j ≤ k

ζjzσ(j)

(√
1−‖a′‖2

1−〈z′,a′〉

)1/pσ(j)

, if j > k
,

where ζj ∈ T, j > k, H = (H1, . . . ,Hk) ∈ Aut(Bk), a′ = H−1(0), and σ ∈ Σn(p).

3. Boundary behavior of proper holomorphic mappings between Hartogs triangles

Note that the boundary ∂Fp,q of the generalized Hartogs triangle Fp,q may be written as ∂Fp,q =
{0, 0} ∪Kp,q ∪ Lp,q, where

Kp,q :=
{

(z, w) ∈ Cn × Cm : 0 <

n∑
j=1

|zj |2pj =

m∑
j=1

|wj |2qj < 1
}
,

Lp,q :=
{

(z, w) ∈ Cn × Cm :

n∑
j=1

|zj |2pj <
m∑
j=1

|wj |2qj = 1
}
.

Let Fp,q and Fp̃,q̃ be two generalized Hartogs triangles and let F : Fp,q −→ Fp̃,q̃ be proper holomorphic
mapping. It is known ([8], [3]) that F extends holomorphically through any boundary point (z0, w0) ∈
∂Fp,q \ {(0, 0)}.

The aim of this section is to prove the following crucial fact.

Lemma 8. Let nm 6= 1. If F : Fp,q −→ Fp̃,q̃ is proper and holomorphic, then

F (Kp,q) ⊂ Kp̃,q̃, F (Lp,q) ⊂ Lp̃,q̃.

The following two lemmas will be needed in the proof of Lemma 8.

Lemma 9. If n ≥ 2 and m = 1, then Kp,q is not Levi flat at (z, w) ∈ Kp,q, where at lest two coordinates
of z are non-zero (i.e. the Levi form of the defining function restricted to the complex tangent space is
not degenerate at (z, w)).

Lemma 10. Let D ⊂ Cn+1 and V ⊂ Cn be bounded domains, a ∈ V , and let Φ : V −→ ∂D be
holomorphic mapping such that rank Φ′(a) = n. Assume that D has local defining function r of class C2
in the neighborhood of Φ(a). Then ∂D is Levi flat at Φ(a).
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