Tangents and corners

Katarzyna Gwóźdź

G - any simply connected domain in \mathbb{C} with locally connected boundary $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} = D(0, 1)$ unit disc $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\} = \partial D$ unit circle

Definition: We say that ∂G has a corner of opening $\alpha \pi$ at $f(\gamma) \neq \infty$ $(0 \leq \alpha \leq 2\pi)$ if

$$arg[f(e^{it}) - f(e^{i\theta})] \to \begin{cases} \beta & t \to \theta^+ \\ \beta + \alpha \pi & t \to \theta^- \end{cases}$$

Example: Let f be conformal map of \mathbb{D} onto the sector $G = \{ | arg\omega | < \frac{\pi\alpha}{2} \}$

$$f_{(z)} = \left(\frac{1-z}{1+z}\right)^{\alpha} = e^{-i\pi\alpha} \left(\frac{z-1}{z+1}\right)^{\alpha} \text{ for } (0 < \alpha \leq 2)$$

There are four posibilities:

1. $\alpha \in (0, 1)$

There is an outward-pointing cusp at 0

2. $\alpha = 1$

There is a tangent of direction angle $\frac{\pi}{2}$

3. $\alpha \in (1, 2)$

There is an inward-pointing cusp at 0

4. $\alpha = 2$

There is an inward-pointing cusp at 0

Theorem: Let f maps \mathbb{D} conformally onto G where ∂G is locally connected. Let $\gamma = e^{i\theta} \in \mathbb{T}$ and $f(\gamma) \neq \infty$. Then ∂G has a corrner of opening $\pi \alpha (0 \leq \alpha \leq 2)$ at $f(\gamma)$ if and only if

$$arg \frac{f(z)-f(\gamma)}{(z-\gamma)^{\alpha}} \to \beta - \alpha(\theta + \frac{\pi}{2}) \text{ as } z \to \gamma, \ z \in \mathbb{D}.$$

REFERENCES

 $[1]\mbox{Christian Pommerenke},$ Fachbereich, Technische Universitat, 1000 Berlin 12, FRG