Tangents and corners

Katarzyna Gwóźdź

G - any simply connected domain in \mathbb{C} with locally connected boundary $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}=D(0,1)$ unit disc $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}=\partial D$ unit circle

Definition: We say that ∂G has a corner of opening $\alpha \pi$ at $f(\gamma) \neq \infty(0 \leqslant \alpha \leqslant 2 \pi)$ if

$$
\arg \left[f\left(e^{i t}\right)-f\left(e^{i \theta}\right)\right] \rightarrow \begin{cases}\beta & t \rightarrow \theta^{+} \\ \beta+\alpha \pi & t \rightarrow \theta^{-}\end{cases}
$$

Example: Let f be conformal map of \mathbb{D} onto the sector $G=\left\{|\arg \omega|<\frac{\pi \alpha}{2}\right\}$
$f_{(z)}=\left(\frac{1-z}{1+z}\right)^{\alpha}=e^{-i \pi \alpha}\left(\frac{z-1}{z+1}\right)^{\alpha}$ for $(0<\alpha \leqslant 2)$
There are four posibilities:

1. $\alpha \in(0,1)$

There is an outward-pointing cusp at 0
2. $\alpha=1$

There is a tangent of direction angle $\frac{\pi}{2}$
3. $\alpha \in(1,2)$

There is an inward-pointing cusp at 0

4. $\alpha=2$

There is an inward-pointing cusp at 0

Theorem: Let f maps \mathbb{D} conformally onto G where ∂G is locally connected. Let $\gamma=e^{i \theta} \in \mathbb{T}$ and $f(\gamma) \neq \infty$. Then ∂G has a corrner of opening $\pi \alpha(0 \leqslant \alpha \leqslant 2)$ at $f(\gamma)$ if and only if

$$
\arg \frac{f(z)-f(\gamma)}{(z-\gamma)^{\alpha}} \rightarrow \beta-\alpha\left(\theta+\frac{\pi}{2}\right) \text { as } z \rightarrow \gamma, z \in \mathbb{D} .
$$

REFERENCES

[1]Christian Pommerenke, Fachbereich, Technische Universitat, 1000 Berlin 12, FRG

