THE KOEBE DISTORTION THEOREM

Marta Machnicka

The class S consists of all functions: $f(z)=z+a_2z^2+a_3z^3+\ldots$ (|z|<1) analytic and univalent in $\mathbb D$. Many formulas take their nicest form with this normalization f(0)=0, f'(0)=1. The class Σ consists of all functions: $g(\zeta)=\zeta+b_0+b_1\zeta^{-1}+\ldots$ $(|\zeta|>1)$ univalent in $\mathbb D^*$.

We can show that:

$$\operatorname{area}(\mathbb{C}\backslash g(\mathbb{D}^*)) = \pi \left(1 - \sum_{n=1}^{\infty} n|b_n|^2\right) \text{ for } g \in \Sigma.$$

This implies the area theorem:

Theorem 1 (Area Theorem). If $g \in \Sigma$, then: $\sum_{n=1}^{\infty} n|b_n|^2 \leq 1$, with equality if and only if $g \in \widetilde{\Sigma}$.

Proposition 1. If f maps $\mathbb D$ conformally into $\mathbb C$ then

$$\left| (1 - |z|^2) \frac{f''(z)}{f'(z)} - 2\overline{z} \right| \le 4 \quad \text{for} \quad z \in \mathbb{D}.$$

Equality holds for the Koebe function. Integrating this inequality twice we obtain the famous Koebe distortion theorem.

Theorem 2 (Distortion Theorem). For any $f \in S$, if |z| = q,

$$\frac{1-q}{(1+q)^3} \le |f'(z)| \le \frac{1+q}{(1-q)^3} , \quad 0 \le q < 1 .$$

Theorem 3 (Growth Theorem). For any $f \in S$, if |z| = q,

$$\frac{q}{(1+q)^2} \le |f(z)| \le \frac{q}{(1-q)^2} \;, \quad 0 \le q < 1 \;\;.$$

Theorem 4 (Koebe Distortion Theorem). If f maps $\mathbb D$ conformally into $\mathbb C$ and if $z\in \mathbb D$ then

$$|f'(0)| \frac{|z|}{(1+|z|)^2} \le |f(z) - f(0)| \le |f'(0)| \frac{|z|}{(1-|z|)^2},$$
$$|f'(0)| \frac{1-|z|}{(1+|z|)^3} \le |f'(z)| \le |f'(0)| \frac{1+|z|}{(1-|z|)^3}.$$

REFERENCES

- [1] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992
- [2] P.L. Duren, Univalent functions, Springer-Verlag, New York, 1983
- [3] P. Henrici, Applied and Computational Complex Analysis. Volume 3: Discrete Fourier Analysis
 Cauchy Integrals Construction of Conformal Maps Univalent Functions, Wiley And Sons,
 1986