FAMILIES OF STRICTLY PSEUDOCONVEX DOMAINS AND PEAK FUNCTIONS

ARKADIUSZ LEWANDOWSKI

Let $D \subset \mathbb{C}^n$ be a bounded domain and let ζ be a boundary point of D. It is called a *peak point* with respect to $\mathcal{O}(\overline{D})$, the family of functions which are holomorphic in a neighborhood of \overline{D} , if there exist a function $f \in \mathcal{O}(\overline{D})$ such that $f(\zeta) = 1$ and $f(\overline{D} \setminus \{\zeta\}) \subset \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. Such a function is a *peak function for* D at ζ . The concept of peak functions appears to be a powerful tool in complex analysis with many applications. It has been used to show the existence of (complete) proper holomorphic embeddings of strictly pseudoconvex domains into the unit ball \mathbb{B}^N with large N (see [5],[3]), to estimate the boundary behavior of Carathéodory and Kobayashi metrics ([1],[6]), or to construct the solution operators for $\overline{\partial}$ problem with L^{∞} or Hölder estimates ([4],[10]), just to name a few of those applications.

It is well known that every boundary point of strictly pseudoconvex domain is a peak point. Even more is true, in [6] it is showed that, given a strictly pseudoconvex domain G, there exists an open neighborhood \widehat{G} of G, and a continuous function $h : \widehat{G} \times \partial G \to \mathbb{C}$ such that for $\zeta \in \partial G$, the function $h(\cdot; \zeta)$ is a peak function for G at ζ .

In a recent paper [2] the following question has been posed:

Problem 0.1. Let $\rho : \mathbb{D} \times \mathbb{C}^n \to \mathbb{R}$ be a plurisubharmonic function of class $\mathcal{C}^{2+k}, k \in \mathbb{N} \cup \{0\}$, such that for any $z \in \mathbb{D}$ the truncated function $\rho|_{\{z\} \times \mathbb{C}^n}$ is strictly plurisubharmonic. Define $G_z := \{w \in \mathbb{C}^n : \rho(z, w) < 0\}, z \in \mathbb{D}$. This can be understood as a family of strictly pseudoconvex domains over \mathbb{D} . Does there exist a \mathcal{C}^k -continuously varying family $(h_{z,\zeta})_{z \in \mathbb{D}, \zeta \in \partial G_z}$ of peak functions for G_z at ζ ?

We answer this question affirmatively in the case k = 0 and under additional assumption that, roughly speaking, the function ρ keeps its regularity up to the set $\Omega \times \mathbb{C}^n$, where Ω is some open neighborhood of $\overline{\mathbb{D}}$. Namely, let us consider the following:

Situation 0.2. Let $(G_t)_{t \in T}$ be a family of bounded strictly pseudoconvex domains, where T is a compact metric space with associated metric d. Suppose we have a domain $U \subset \mathbb{C}^n$ such that

- $(1) \bigcup_{t \in T} \partial G_t \subset \subset U,$
- (2) for each $t \in T$ there exists on U a defining function r_t for G_t of class \mathcal{C}^2 and such that its Levi form $\mathcal{L}_{r_t}(\zeta; X)$ is strictly positive for any $\zeta \in \partial G_t$ and $X \in \mathbb{C}^n \setminus \{0\}$,

(3) for any $\varepsilon > 0$ there exists a $\delta > 0$ such that for any $s, t \in T$ with $d(s,t) \leq \delta$ there is $||r_t - r_s||_{\mathcal{C}^2(U)} < \varepsilon$.

We shall prove the following:

Theorem 0.3. Let $(G_t)_{t\in T}$ be a family of strictly pseudoconvex domains as in Situation 0.2. Then there exists an $\varepsilon > 0$ such that for any $\eta_1 < \varepsilon$ there exist an $\eta_2 > 0$ and positive constants d_1, d_2 such that for any $t \in T$ there exist a domain \widehat{G}_t containing \overline{G}_t , and functions $h_t(\cdot; \zeta) \in \mathcal{O}(\widehat{G}_t), \zeta \in \partial G_t$ fulfilling the following conditions:

- (a) $h_t(\zeta;\zeta) = 1, |h_t(\cdot;\zeta)| < 1 \text{ on } \overline{G_t} \setminus \{\zeta\}$ (in particular, $h_t(\cdot;\zeta)$ is a peak function for G_t at ζ),
- (b) $|1 h_t(z;\zeta)| \le d_1 ||z \zeta||, z \in \widehat{G}_t \cap \mathbb{B}(\zeta,\eta_2),$
- (c) $|h_t(z;\zeta)| \le d_2 < 1, z \in \overline{G_t}, ||z \zeta|| \ge \eta_1.$

Moreover, the constants ε , η_2 , d_1 , d_2 , domains $\widehat{G_t}$, and functions $h_t(\cdot; \zeta)$ may be chosen in such a way that for any $\alpha > 0$ and any fixed triple (t_0, ζ_0, z_0) , where $t_0 \in T, \zeta_0 \in \partial G_{t_0}$, and $z_0 \in \widehat{G_{t_0}}$, there exists a $\delta > 0$ such that whenever the triple (s, ξ, w) satisfies $s \in T, \xi \in \partial G_s, w \in \widehat{G_s}$, and $\max\{d(s, t_0), \|\xi - \zeta_0\|, \|w - z_0\|\} < \delta$, then $|h_{t_0}(z_0; \zeta_0) - h_s(w; \xi)| < \alpha$.

References

- E. Bedford, J.E. Fornæss, Biholomorphic maps of weakly pseudoconvex domains, Duke Math. J. 45 (1978), 711-719.
- [2] F. Deng, Q. Guan, L. Zhang, Properties of squeezing functions and global transformations of bounded domains, Trans. Amer. Math. Soc. 368 (4) (2016), 2679-2696.
- [3] B. Drinovec Drnovšek, Complete proper holomorphic embeddings of strictly pseudoconvex domains into balls, J. Math. Anal. Appl. 431 (2015) 2, 705-713.
- [4] J.E. Fornæss, Sup-norm estimates for $\overline{\partial}$ in \mathbb{C}^2 , Ann. of Math. 123 (1986), 335-345.
- [5] F. Forstnerič, Embedding strictly pseudoconvex domains into balls, Trans. Amer. Math. Soc. 295 (1986), 347-368.
- [6] I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in Cⁿ with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219-240.
- [7] M. Jarnicki, P. Pflug, Invariant Distances and Metrics in Complex Analysis, 2nd edition, de Gruyter Expositions in Mathematics 9, Walter de Gruyter 2014.
- [8] S.G. Krantz, Function Theory of Several Complex, reprint of the 1992 ed, AMS Chelsea Publishing, Providence, RI, 2001.
- [9] S.G. Krantz, H.R. Parks, Distance to C^k hypersurfaces, Journal of Diff. Equ. 40 (1981), 116-120.
- [10] R.M. Range, The Carathéodory metric and holomorphic maps on a class of weakly pseudoconvex domains, Pacific J. Math. 78 (1978), 173-188.
- [11] R.M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Mathematics, 108, Springer Verlag, 1986.

 $\mathbf{2}$