THE GEOMETRY OF *m*-HYPERCONVEX DOMAINS

RAFAŁ CZYŻ

Let $\mathcal{SH}_m(\Omega)$ be the class of *m*-subharmonic functions on $\Omega \subset \mathbb{C}^n$, $1 \leq m \leq n$.

Definition 0.1. Let Ω be a domain in \mathbb{C}^n . We say that Ω is *m*-hyperconvex if it admits an exhaustion function that is negative and *m*-subharmonic.

Definition 0.2. Let Ω be a bounded domain in \mathbb{C}^n , and let μ be a non-negative regular Borel measure defined on $\overline{\Omega}$. We say that μ is a *Jensen measure with barycenter* $z_0 \in \overline{\Omega} \ w.r.t. \ \mathcal{SH}_m(\Omega) \cap \mathcal{C}(\overline{\Omega})$ if

$$u(z_0) \leq \int_{\bar{\Omega}} u \, d\mu$$
 for all $u \in \mathcal{SH}_m(\Omega) \cap \mathcal{C}(\bar{\Omega})$.

The set of such measures will be denoted by $\mathcal{J}_{z_0}^m$. Furthermore, the Jensen boundary w.r.t. $\mathcal{J}_{z_0}^m$ is defined as

$$\partial_{\mathcal{J}^m} = \left\{ z \in \bar{\Omega} : \mathcal{J}_z^m = \{ \delta_z \} \right\} \,.$$

The Jensen boundary is another name for the Choquet boundary w.r.t. a given class of Jensen measures.

We prove the following theorems.

Theorem 0.3. Assume that Ω , Ω_1 , and Ω_2 are bounded *m*-hyperconvex domains in \mathbb{C}^n , $n \geq 2, 1 \leq m \leq n$. Then we have the following.

- (1) If $\Omega_1 \cap \Omega_2$ is a domain then it is m-hyperconvex in \mathbb{C}^n .
- (2) The domain $\Omega_1 \times \Omega_2$ is m-hyperconvex in \mathbb{C}^{2n} .
- (3) The domain Ω admits a negative exhaustion function that is strictly msubharmonic on Ω , and continuous on $\overline{\Omega}$.
- (4) If Ω is a priori only a bounded domain in \mathbb{C}^n such that for every $z \in \partial \Omega$ there exists a neighborhood U_z such that $\Omega \cap U_z$ is m-hyperconvex, then Ω is m-hyperconvex.

Theorem 0.4. Assume that Ω is a bounded domain in \mathbb{C}^n , $n \ge 2$, $1 \le m \le n$. Then the following assertions are equivalent.

- (1) Ω is m-hyperconvex in the sense of Definition 0.1;
- (2) $\partial \Omega$ has a weak barrier at every point that is m-subharmonic;
- (3) Ω admits an exhaustion function that is negative, smooth and strictly *m*-subharmonic;
- (4) for every $z \in \partial \Omega$, and every $\mu \in \mathcal{J}_z^m$, we have that $\operatorname{supp}(\mu) \subseteq \partial \Omega$.

Theorem 0.5. Assume that Ω is a bounded domain in \mathbb{C}^n , $n \ge 2$, $1 \le m \le n$. Then the following assertions are equivalent.

RAFAŁ CZYŻ

(1) $\partial\Omega$ is B_m -regular at every boundary point $z_0 \in \partial\Omega$, in the sense that $\lim \operatorname{PB}^m_t(z) = f(z_0),$

$$\lim_{\substack{z \to z_0 \\ z \in \Omega}} \mathsf{PB}_f^{-}(z) = f(z_0)$$

for each continuous function $f: \partial \Omega \to \mathbb{R}$. Here

$$\operatorname{PB}_{f}^{m}(z) = \sup \left\{ v(z) : v \in \mathcal{SH}_{m}(\Omega), \ \overline{\lim_{\substack{\zeta \to \xi \\ \zeta \in \Omega}}} v(\zeta) \le f(\xi) \,, \ \forall \xi \in \partial \Omega \right\}.$$

- (2) $\partial\Omega$ has a strong barrier at every point that is m-subharmonic;
- (3) Ω admits an exhaustion function φ that is negative, smooth, m-subharmonic, and such that

$$(\varphi(z) - |z|^2) \in \mathcal{SH}_m(\Omega);$$

(4) $\partial \Omega = \partial_{\mathcal{J}_z^m}$ in the sense of Definition 0.2.

References

[ACH] P. Åhag, R. Czyż, L. Hed, The geometry of *m*-hyperconvex domains, arXiv:1703.02796, 2017.

 $\mathbf{2}$