\mathbb{C}-CONVEXITY OF SEMITUBE DOMAINS

PAWEŁ ZAPAŁOWSKI

Let $\Pi: \mathbb{C}^{n} \longrightarrow \mathbb{R}^{2 n-1}$ be defined by

$$
\Pi\left(z_{1}, \ldots, z_{n}\right):=\left(\operatorname{Re} z_{1}, \operatorname{Im} z_{1}, \ldots, \operatorname{Re} z_{n-1}, \operatorname{Im} z_{n-1}, \operatorname{Re} z_{n}\right)
$$

Let $D \subset \mathbb{R}^{2 n-1}$ be a domain, $n>1$. The semitube domain with the base D is defined as

$$
\mathcal{S}_{D}:=\Pi^{-1}(D) .
$$

A domain $D \subset \mathbb{C}^{n}$ is called

- \mathbb{C}-convex, if for any affine complex line L such that $L \cap D \neq \varnothing$, the set $L \cap D$ is connected and simply connected,
- linearly convex, if its complement is a union of affine complex hyperplanes.

Any convex domain is \mathbb{C}-convex and any \mathbb{C}-convex domain is linearly convex, but the converses do not hold in general.

The aim of this talk is to prove the following result.
Theorem 1. Let D be a domain in $\mathbb{R}^{2 n-1}$ such that $\left\{x=\left(x^{\prime}, x_{2 n-1}\right) \in \mathbb{R}^{2 n-1}: x^{\prime}=a^{\prime}\right\} \not \subset \partial D$ for any $a \in \partial D$. Then \mathcal{S}_{D} is \mathbb{C}-convex if and only if it is convex.
Remark 2. (a) If $D=\Omega \times \mathbb{R}$ for some domain $\Omega \subset \mathbb{R}^{2 n-2}$ (i.e. $\left\{x \in \mathbb{R}^{2 n-1}: x^{\prime}=a^{\prime}\right\} \subset \partial D$ for any $a \in \partial D$) then the assertion of Theorem 1 is no longer true. Indeed, if Ω is non-convex and \mathbb{C}-convex (as a domain considered in \mathbb{C}^{n-1}), then \mathcal{S}_{D} is non-convex but \mathbb{C}-convex semitube domain.
(b) Although the condition imposed onto the domain D in Theorem 1 seems to be a technical one, the example in part (a) shows that some restriction of this kind is needed, if we want to have the equivalence of the notions of convexity and \mathbb{C}-convexity in the class of semitube domains. It is an open question whether the condition assumed in Theorem 1 is a necessary one for the aforementioned equivalence.

The following observation is crucial in the proof of Theorem 1.
Proposition 3. Let D be a domain in $\mathbb{R}^{2 n-1}, n>1$. Then the following conditions are equivalent:
(i) \mathcal{S}_{D} is linearly convex,
(ii) for any $a=\left(a^{\prime}, a_{2 n-1}\right) \in \mathbb{R}^{2 n-1} \backslash D$ there exists affine subspace $H \subset \mathbb{R}^{2 n-1}$, $\operatorname{codim}_{\mathbb{R}} H \in\{1,2\}$, such that $a \in H, H \cap D=\varnothing$,

$$
H= \begin{cases}\left\{x \in \mathbb{R}^{2 n-1}: b \bullet\left(x^{\prime}-a^{\prime}\right)=\tilde{b} \bullet\left(x^{\prime}-a^{\prime}\right)=0\right\}, & \text { if } \operatorname{codim}_{\mathbb{R}} H=2 \tag{1}\\ \left\{x \in \mathbb{R}^{2 n-1}: x_{2 n-1}=a_{2 n-1}-b \bullet\left(x^{\prime}-a^{\prime}\right)\right\}, & \text { if } \operatorname{codim}_{\mathbb{R}} H=1\end{cases}
$$

for some $b \in \mathbb{R}^{2 n-2}$, where $\tilde{b}=\left(\tilde{b}_{1}, \ldots, \tilde{b}_{2 n-2}\right)$,

$$
\tilde{b}_{j}=\left\{\begin{array}{ll}
-b_{j+1}, & \text { if } j \text { is odd } \\
b_{j-1}, & \text { if } j \text { is even }
\end{array}, \quad j=1,2, \ldots, 2 n-2 ;\right.
$$

moreover, if $\operatorname{codim}_{\mathbb{R}} H=2$, then $b \neq 0$.
For a domain $G \subset \mathbb{C}^{n}$ and a point $w \in \mathbb{C}^{n}$, we denote by $\Gamma_{G}(w)$ the set of all complex hyperplanes L such that $(w+L) \cap G=\varnothing$. One may identify this set with a subset of complex projective space \mathbb{P}^{n-1} : here $L=\left\{z \in \mathbb{C}^{n}: b \bullet z=0\right\}$ is identified with $[b] \in \mathbb{P}^{n-1}$. In the proof of Theorem 1 we shall use the following characterization of \mathbb{C}-convexity: if a domain $G \subset \mathbb{C}^{n}, n>1$, is \mathbb{C}-convex then for any $w \in \partial G$ the set $\Gamma_{G}(w)$ is non-empty and connected.

Let $0 \leq d \leq k$ be two integers. The Grassmann manifold $\operatorname{Gr}\left(d, \mathbb{R}^{k}\right)$ is the set of all d-dimensional real subspaces of \mathbb{R}^{k} which is topologized as a quotient space. In the proof of Theorem 1 we shall use the fact that the Grassmann manifold $\operatorname{Gr}\left(d, \mathbb{R}^{k}\right)$ is compact.

