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Let Π : Cn −→ R2n−1 be defined by

Π(z1, . . . , zn) := (Re z1, Im z1, . . . ,Re zn−1, Im zn−1,Re zn).

Let D ⊂ R2n−1 be a domain, n > 1. The semitube domain with the base D is defined as

SD := Π−1(D).

A domain D ⊂ Cn is called
• C-convex, if for any affine complex line L such that L ∩D 6= ∅, the set L ∩D is connected and

simply connected,
• linearly convex, if its complement is a union of affine complex hyperplanes.

Any convex domain is C-convex and any C-convex domain is linearly convex, but the converses do not
hold in general.

The aim of this talk is to prove the following result.

Theorem 1. Let D be a domain in R2n−1 such that {x = (x′, x2n−1) ∈ R2n−1 : x′ = a′} 6⊂ ∂D for any
a ∈ ∂D. Then SD is C-convex if and only if it is convex.

Remark 2. (a) If D = Ω × R for some domain Ω ⊂ R2n−2 (i.e. {x ∈ R2n−1 : x′ = a′} ⊂ ∂D for any
a ∈ ∂D) then the assertion of Theorem 1 is no longer true. Indeed, if Ω is non-convex and C-convex (as
a domain considered in Cn−1), then SD is non-convex but C-convex semitube domain.

(b) Although the condition imposed onto the domain D in Theorem 1 seems to be a technical one, the
example in part (a) shows that some restriction of this kind is needed, if we want to have the equivalence
of the notions of convexity and C-convexity in the class of semitube domains. It is an open question
whether the condition assumed in Theorem 1 is a necessary one for the aforementioned equivalence.

The following observation is crucial in the proof of Theorem 1.

Proposition 3. Let D be a domain in R2n−1, n > 1. Then the following conditions are equivalent:
(i) SD is linearly convex,
(ii) for any a = (a′, a2n−1) ∈ R2n−1 \ D there exists affine subspace H ⊂ R2n−1, codimR H ∈ {1, 2},

such that a ∈ H, H ∩D = ∅,

(1) H =

{
{x ∈ R2n−1 : b • (x′ − a′) = b̃ • (x′ − a′) = 0}, if codimR H = 2

{x ∈ R2n−1 : x2n−1 = a2n−1 − b • (x′ − a′)}, if codimR H = 1

for some b ∈ R2n−2, where b̃ = (b̃1, . . . , b̃2n−2),

b̃j =

{
−bj+1, if j is odd
bj−1, if j is even

, j = 1, 2, . . . , 2n− 2;

moreover, if codimR H = 2, then b 6= 0.

For a domain G ⊂ Cn and a point w ∈ Cn, we denote by ΓG(w) the set of all complex hyperplanes L
such that (w + L) ∩G = ∅. One may identify this set with a subset of complex projective space Pn−1:
here L = {z ∈ Cn : b • z = 0} is identified with [b] ∈ Pn−1. In the proof of Theorem 1 we shall use the
following characterization of C-convexity: if a domain G ⊂ Cn, n > 1, is C-convex then for any w ∈ ∂G
the set ΓG(w) is non-empty and connected.

Let 0 ≤ d ≤ k be two integers. The Grassmann manifold Gr(d,Rk) is the set of all d-dimensional real
subspaces of Rk which is topologized as a quotient space. In the proof of Theorem 1 we shall use the
fact that the Grassmann manifold Gr(d,Rk) is compact.

1


