C-CONVEXITY OF SEMITUBE DOMAINS

PAWEŁ ZAPAŁOWSKI

Let $\Pi: \mathbb{C}^n \longrightarrow \mathbb{R}^{2n-1}$ be defined by

$$\Pi(z_1, \dots, z_n) := (\operatorname{Re} z_1, \operatorname{Im} z_1, \dots, \operatorname{Re} z_{n-1}, \operatorname{Im} z_{n-1}, \operatorname{Re} z_n).$$

Let $D \subset \mathbb{R}^{2n-1}$ be a domain, n > 1. The semitube domain with the base D is defined as

$$S_D := \Pi^{-1}(D).$$

A domain $D \subset \mathbb{C}^n$ is called

- \mathbb{C} -convex, if for any affine complex line L such that $L \cap D \neq \emptyset$, the set $L \cap D$ is connected and simply connected,
- linearly convex, if its complement is a union of affine complex hyperplanes.

Any convex domain is C-convex and any C-convex domain is linearly convex, but the converses do not hold in general.

The aim of this talk is to prove the following result.

Theorem 1. Let D be a domain in \mathbb{R}^{2n-1} such that $\{x = (x', x_{2n-1}) \in \mathbb{R}^{2n-1} : x' = a'\} \not\subset \partial D$ for any $a \in \partial D$. Then S_D is \mathbb{C} -convex if and only if it is convex.

Remark 2. (a) If $D = \Omega \times \mathbb{R}$ for some domain $\Omega \subset \mathbb{R}^{2n-2}$ (i.e. $\{x \in \mathbb{R}^{2n-1} : x' = a'\} \subset \partial D$ for any $a \in \partial D$) then the assertion of Theorem 1 is no longer true. Indeed, if Ω is non-convex and \mathbb{C} -convex (as a domain considered in \mathbb{C}^{n-1}), then \mathcal{S}_D is non-convex but \mathbb{C} -convex semitube domain.

(b) Although the condition imposed onto the domain D in Theorem 1 seems to be a technical one, the example in part (a) shows that some restriction of this kind is needed, if we want to have the equivalence of the notions of convexity and \mathbb{C} -convexity in the class of semitube domains. It is an open question whether the condition assumed in Theorem 1 is a necessary one for the aforementioned equivalence.

The following observation is crucial in the proof of Theorem 1.

Proposition 3. Let D be a domain in \mathbb{R}^{2n-1} , n > 1. Then the following conditions are equivalent:

- (i) S_D is linearly convex,
- (ii) for any $a = (a', a_{2n-1}) \in \mathbb{R}^{2n-1} \setminus D$ there exists affine subspace $H \subset \mathbb{R}^{2n-1}$, $\operatorname{codim}_{\mathbb{R}} H \in \{1, 2\}$, such that $a \in H$, $H \cap D = \emptyset$,

(1)
$$H = \begin{cases} \{x \in \mathbb{R}^{2n-1} : b \bullet (x' - a') = \tilde{b} \bullet (x' - a') = 0\}, & \text{if } \operatorname{codim}_{\mathbb{R}} H = 2\\ \{x \in \mathbb{R}^{2n-1} : x_{2n-1} = a_{2n-1} - b \bullet (x' - a')\}, & \text{if } \operatorname{codim}_{\mathbb{R}} H = 1 \end{cases}$$

for some $b \in \mathbb{R}^{2n-2}$, where $\tilde{b} = (\tilde{b}_1, \dots, \tilde{b}_{2n-2})$,

$$\tilde{b}_j = \begin{cases} -b_{j+1}, & \text{if } j \text{ is odd} \\ b_{j-1}, & \text{if } j \text{ is even} \end{cases}, \quad j = 1, 2, \dots, 2n - 2;$$

moreover, if $\operatorname{codim}_{\mathbb{R}} H = 2$, then $b \neq 0$.

For a domain $G \subset \mathbb{C}^n$ and a point $w \in \mathbb{C}^n$, we denote by $\Gamma_G(w)$ the set of all complex hyperplanes L such that $(w+L) \cap G = \emptyset$. One may identify this set with a subset of complex projective space \mathbb{P}^{n-1} : here $L = \{z \in \mathbb{C}^n : b \bullet z = 0\}$ is identified with $[b] \in \mathbb{P}^{n-1}$. In the proof of Theorem 1 we shall use the following characterization of \mathbb{C} -convexity: if a domain $G \subset \mathbb{C}^n$, n > 1, is \mathbb{C} -convex then for any $w \in \partial G$ the set $\Gamma_G(w)$ is non-empty and connected.

Let $0 \le d \le k$ be two integers. The Grassmann manifold $Gr(d, \mathbb{R}^k)$ is the set of all d-dimensional real subspaces of \mathbb{R}^k which is topologized as a quotient space. In the proof of Theorem 1 we shall use the fact that the Grassmann manifold $Gr(d, \mathbb{R}^k)$ is compact.