Donaldson's equation in \mathbb{C}^2 Szymon Myga

Following Donaldson we introduce the Riemannian structure on the space of volume forms on compact manifold X. The geodesic equation in this space is called Donaldson's equation. For a function $u : [0, 1] \times X \ni (t, x) \to \mathbb{R}$ such that $1 - \Delta_x u > 0$, the Donaldson's equation is

$$\ddot{u} = \frac{|\nabla_x \dot{u}|^2}{1 - \Delta_x u},$$

where dot indicates time derivative.

We are interested in its nonlinear part, i.e. $Q(D^2u) = \ddot{u}\Delta_x u - |\nabla_x \dot{u}|^2$ (change of sign before Δ_x is for convinience, it doesn't affect the equation). We notice that in \mathbb{R}^3 the solution to equation $Q(D^2u) = f$ can be extended to \mathbb{C}^2 , as a solution to Monge-Ampere equation that is independent of one imaginary parameter.

Thus in \mathbb{R}^3 , having a solution $Q(D^2u) = 1$ that is strictly convex in time variable and strictly subharmonic in space variable gives also a solution to unimodular Monge-Ampere equation that is strictly plurisubharmonic and allows us to construct Kähler metrics on \mathbb{C}^2 .

For the rest of the talk we talk about Kähler metrics that are given by known solutions to $Q(D^2u) = 1$ in \mathbb{R}^3 .