ON HOLOMORPHIC AND PLURISUBHARMONIC FUNCTIONS

RAFAŁ CZYŻ

Assume that Ω and Ω' are two bounded, connected, and open subsets of \mathbb{C} , and let $f : \Omega \to \Omega'$ be a function. Then it is a classical result that the following conditions are equivalent:

- (1) for any subharmonic function $\varphi : \Omega' \to \mathbb{R} \cup \{-\infty\}$, the function $(\varphi \circ f) : \Omega \to \mathbb{R} \cup \{-\infty\}$ is subharmonic.
- (2) for any harmonic function $h: \Omega' \to \mathbb{R}$, the function $(h \circ f): \Omega \to \mathbb{R}$ is harmonic;
- (3) f is holomorphic or \overline{f} is holomorphic;

We shall prove the higher dimensional analog of the above theorem.

Theorem 1. Let $f = (f_1, \ldots, f_M) : \Omega_N \to \Omega_M$ be a function, where $\Omega_N \subset \mathbb{C}^N$, and $\Omega_M \subset \mathbb{C}^M$, $N, M \ge 1$, are bounded, connected, and open sets. Then the following assertions are equivalent:

- (1) for any plurisubharmonic function $\varphi : \Omega_M \to \mathbb{R} \cup \{-\infty\}$, the function $(\varphi \circ f) : \Omega_N \to \mathbb{R} \cup \{-\infty\}$ is plurisubharmonic;
- (2) for any pluriharmonic function $h: \Omega_M \to \mathbb{R}$, the function $(h \circ f): \Omega_N \to \mathbb{R}$ is pluriharmonic;
- (3) f is holomorphic or \overline{f} is holomorphic.

We shall also characterize those holomorphic functions which preserves the class of harmonic (subharmonic) functions.

Theorem 2. Let $f = (f_1, \ldots, f_M) : \Omega_N \to \Omega_M$ be a holomorphic mapping, where $\Omega_N \subset \mathbb{C}^N$, $N \geq 1$, and $\Omega_M \subset \mathbb{C}^M$, M > 1, are bounded, connected and open sets. Then the following assertions are equivalent:

- (1) for any subharmonic function $\varphi : \Omega_M \to \mathbb{R} \cup \{-\infty\}$, the function $(\varphi \circ f) : \Omega_N \to \mathbb{R} \cup \{-\infty\}$ is subharmonic;
- (2) for any harmonic function $h: \Omega_M \to \mathbb{R}$, the function $(h \circ f): \Omega_N \to \mathbb{R}$ is harmonic;
- (3) f has the following form:
 - (a) if $M \leq N$, then f is constant or f can be represented by:

 $f(z) = cAz + w_0 \,,$

where $c \in \mathbb{R}$, $w_0 \in \mathbb{C}^M$, and A is a $M \times N$ -unitary matrix;

(b) if M > N, then f is constant.