m-SUBHARMONIC FUNCTIONS ON COMPACT SETS

RAFAL CZYŻ

Let $\mathcal{SH}_m^o(X)$ denote the set of functions that are the restriction to X of functions that are m-subharmonic and continuous on some neighborhood of $X \subseteq \mathbb{C}^n$.

Next, we define a class of Jensen measures.

Definition 1. Let X be a compact set in \mathbb{C}^n , $1 \leq m \leq n$, and let μ be a nonnegative regular Borel measure defined on X with $\mu(X) = 1$. We say that μ is a *Jensen measure with barycenter* $z \in X$ if

$$u(z) \leq \int_X u \, d\mu$$
 for all $u \in \mathcal{SH}^o_m(X)$.

The set of such measures will be denoted by $\mathcal{J}_z^m(X)$.

With the help of the Jensen measures we can define m-subharmonic functions on compact sets.

Definition 2. Let X be a compact set in \mathbb{C}^n . An upper semicontinuous function u defined on X is said to be *m*-subharmonic on X, $1 \le m \le n$, if

$$u(z) \leq \int_X u \, d\mu$$
, for all $z \in X$ and all $\mu \in \mathcal{J}_z^m(X)$.

The set of *m*-subharmonic functions defined on X will be denoted by $\mathcal{SH}_m(X)$. A function $h: X \to \mathbb{R}$ is called *m*-harmonic if h, and -h, are *m*-subharmonic. The set of all *m*-harmonic functions defined on X will be denoted by $\mathcal{H}_m(X)$.

Definition 3. Let $1 \le m \le n$, and let X be a compact set in \mathbb{C}^n . The Choquet boundary of X w.r.t. $\mathcal{J}_{z_0}^m$ is defined as

$$O_X^m = \left\{ z \in X : \mathcal{J}_{z_0}^m = \left\{ \delta_z \right\} \right\}.$$

The Šilov boundary, B_X^m , of X is defined to be the topological closure of O_X^m .

We shall prove the characterization of Šilov boundary by peak m-subharmonic functions and by harmonic measures.

We characterize those compact sets X for which the Dirichlet problem has a solution within the class of continuous m-subharmonic or m-harmonic functions defined on a compact set, i.e. for any $f \in \mathcal{C}(B_X^m)$ one can find $u \in S\mathcal{H}_m(X) \cap \mathcal{C}(X)(\mathcal{H}_m(X) \cap \mathcal{C}(X))$ such that u = f on B_X^m .